首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91882篇
  免费   3961篇
  国内免费   4392篇
电工技术   4115篇
技术理论   5篇
综合类   8841篇
化学工业   12761篇
金属工艺   5679篇
机械仪表   3238篇
建筑科学   4326篇
矿业工程   1295篇
能源动力   2749篇
轻工业   5860篇
水利工程   1948篇
石油天然气   4326篇
武器工业   704篇
无线电   6952篇
一般工业技术   14045篇
冶金工业   2499篇
原子能技术   2184篇
自动化技术   18708篇
  2024年   84篇
  2023年   261篇
  2022年   376篇
  2021年   604篇
  2020年   978篇
  2019年   930篇
  2018年   1046篇
  2017年   982篇
  2016年   1503篇
  2015年   2151篇
  2014年   3982篇
  2013年   4717篇
  2012年   4045篇
  2011年   4736篇
  2010年   4060篇
  2009年   5484篇
  2008年   5504篇
  2007年   5846篇
  2006年   5459篇
  2005年   4584篇
  2004年   3982篇
  2003年   3953篇
  2002年   3963篇
  2001年   2978篇
  2000年   3302篇
  1999年   2983篇
  1998年   2490篇
  1997年   2364篇
  1996年   2507篇
  1995年   2648篇
  1994年   2406篇
  1993年   1462篇
  1992年   1485篇
  1991年   1022篇
  1990年   747篇
  1989年   664篇
  1988年   632篇
  1987年   371篇
  1986年   222篇
  1985年   369篇
  1984年   411篇
  1983年   429篇
  1982年   328篇
  1981年   404篇
  1980年   270篇
  1979年   114篇
  1978年   112篇
  1977年   69篇
  1976年   40篇
  1975年   55篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
In recent years, many tidal turbine projects have been developed using composites blades. Tidal turbine blades are subject to ocean forces and sea water aggressions, and the reliability of these components is crucial to the profitability of ocean energy recovery systems. The majority of tidal turbine developers have preferred carbon/epoxy blades, so there is a need to understand how prolonged immersion in the ocean affects these composites. In this study the long term behaviour of different carbon/epoxy composites has been studied using accelerated ageing tests. A significant reduction of composite strengths has been observed after saturation of water in the material. For longer immersions only small further changes in these properties occur. No significant changes have been observed for moduli nor for composite toughness. The effect of sea water ageing on damage thresholds and kinetics has been studied and modelled. After saturation, the damage threshold is modified while kinetics of damage development remain the same.  相似文献   
22.
An experimental investigation on the mechanism of porosity formation during the laser joining of carbon fiber reinforced polymer (CFRP) and steel is presented. The porosity morphology and distribution were characterized by optical and scanning electron microscopy, and the thermal pyrolysis behaviors were investigated by thermal analysis and designed back-side cooling experiments. The results show that there are two types of porosities in CFRP. Porosity I only appears when the heat input is more than 77.8 J/mm. It has a smooth inner wall and distributes near the bonding interface between CFRP and steel at the central area of melted zone, which is caused by gaseous products such as CO2, NH3, H2O, and hydrocarbons produced by the pyrolysis of CFRP. Porosity II can be seen under all joining conditions. It has a rough inner wall and distributes far away from the bonding interface, concentrating at the final solidification locations. Porosity II is caused by the shrinkage of melted CFRP during solidification stage.  相似文献   
23.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
24.
《Ceramics International》2015,41(7):8768-8772
Neodymium doped bismuth ferrite (BiFeO3, BFO) nanoparticles were successfully synthesized by a facile sol–gel route. The influence of annealing temperature, time, Bi content and solvent on the crystal structure of BFO was studied. Results indicated that the optimum processing condition of BFO products was 550–600 °C/1.5 h with excess 3–6% Bi and ethylene glycol as solvent. On the other hand, Nd3+ ion was introduced into the BFO system and the effect of Nd3+ concentration on the structure, magnetic and dielectric properties of BFO were investigated. It was found that the magnetization of BFO was enhanced significantly with Nd3+ substitution, being attributed to the suppression of the spiral cycloidal magnetic structure led by the crystal structure transition. Furthermore, with increasing Nd3+ content, the dielectric constant was found to decrease while the dielectric loss was enhanced, which was mainly due to the hoping conduction mechanism with the reduction of oxygen vacancies.  相似文献   
25.
A method for simultaneous measurement of the thickness and density for Glass Fiber-Reinforced Polymer (GFRP) laminate plates with ultrasonic waves in C-Scan mode is presented in the form of maps. The method uses three different signals in immersion pulse-echo C-Scan mode. The maps obtained based on the density show the heterogeneity of the material at high resolution at the pixel level (1 × 1 mm2) and therefore they represent an efficient tool to assess and evaluate the damage of the composite structures after manufacturing and after an applied mechanical loading.  相似文献   
26.
Surface oxidation and ensuing damage substantially decrease the service life of High Temperature Polymer Matrix Composite (HTPMC) structures. Oxidative degradation behavior of composites is strongly dependent on the coupling between chemical and mechanical responses of the material. In a composite lamina, the onset of damage and subsequent coupled acceleration of both damage and oxidation are controlled by the transverse failure strength of the oxidized regions. The direct measurement of this strength from experimentation is challenging and cumbersome. A model-based methodology for estimating the mean transverse failure strength of the oxidized regions of a unidirectional composite is described in this paper. As the strength of the oxidized region is expected to show a high-degree of spatial variability, the estimated mean is shown to be relatively insensitive to the effect of strength variance. The developed methodology is illustrated with isothermal aging data available for a typical high-temperature composite system.  相似文献   
27.
The site preferences of co-alloying elements (Mo–Ta, Mo–Re, Mo–Cr) in Ni3Al are studied using first-principles calculations, and the effects of these alloying elements on the elastic properties of Ni3Al are evaluated by elastic property calculations. The results show that the Mo–Ta, Mo–Re and Mo–Cr atom pairs all prefer Al–Al sites and the spatial neighbor relation of substitution sites almost has no influence on the site preference results. Furthermore, the Young's modulus of Ni3Al increases much higher by substituting Al–Al sites with co-alloying atoms, among which Mo–Re has the best strengthening effect. The enhanced chemical bondings between alloying atoms and their neighbor host atoms are considered to be the main strengthening mechanism of the alloying elements in Ni3Al.  相似文献   
28.
The structural changes induced in a CoCrCuFeNi multicomponent nano-crystalline high-entropy alloy (HEA) under fast electron irradiation were investigated by in-situ transmission electron microscopy (TEM) using a high voltage electron microscope (HVEM). A fine-grained face centered cubic (fcc) single phase was obtained in the sputtered specimens. The fcc solid solution showed high phase stability against irradiation over a wide temperature range from 298 to 773 K, and remained as the main constituent phase even when the samples were irradiated up to 40 displacement per atom (dpa). Moreover, the irradiation did not seem to induce grain coarsening. This is the first report on the irradiation damage in 5-component HEA under MeV electron irradiation.  相似文献   
29.
《Ceramics International》2015,41(6):7796-7802
The perovskite proton conductors BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x=0.9, 0.94, 0.98, 1.0, 1.03, 1.06, and 1.1) have been successfully prepared by the conventional solid state reaction route. X-ray diffraction (XRD) patterns of the samples indicate that BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x≥1.0) samples possess a single phase orthorhombic structure, but a secondary phase (Y,Ce)O2−δ exists in BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x<1.0) samples. SEM photographs show that the grain size of BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ increases and the porosity decreases with Ba2+ content varying from x=0.9 to 1.1. Because of ZnO addition as sintering aid, the sintering temperature of the samples reduces from 1550 °C to 1250 °C. The chemical stability of the samples against CO2 decreases with the increase in Ba content from x=0.9 to 1.1. All the samples show a excellent stability against water vapor at 850 °C. The conductivities of the samples increase and the activation energies reduce with the increase in Ba content. The present results suggest that it is very important to control the stoichiometry of cations to obtain desired perovskite type high temperature proton conductors.  相似文献   
30.
Electrical resistivity, Seebeck coefficient, specific heat and thermal conductivity measurements on the Ti50−xNi50+x (x = 0.0–1.6 at.%) shape memory alloys are performed to investigate their thermal and transport properties. In this study, anomalous features are observed in both cooling and heating cycles in all measured physical properties of the slightly Ni-rich TiNi alloys (x ≤ 1.0), corresponds to the transformation between the B19′ martensite and B2 austenite phases. Besides, the transition temperature is found to decrease gradually with increasing Ni content, and the driving force for the transition is also found to diminish slowly with the addition of excess Ni, as revealed by specific heat measurements. While the signature of martensitic transformation vanishes for the Ni-rich TiNi alloys with x ≥ 1.3, the characteristics of strain glass transition start to appear. The Seebeck coefficients of these TiNi alloys were found to be positive, suggesting the hole-type carriers dominate the thermoelectric transport. From the high-temperature Seebeck coefficients, the estimated value of Fermi energy ranges from ∼1.5 eV (Ti48.4Ni51.6) to ∼2.1 eV (Ti50Ni50), indicating the metallic nature of these alloys. In addition, the thermal conductivity of the slightly Ni-rich TiNi alloys with x ≤ 1.0 shows a distinct anomalous feature at the B19′ → B2 transition, likely due to the variation in lattice thermal conductivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号