首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   1篇
化学工业   21篇
机械仪表   2篇
建筑科学   2篇
能源动力   20篇
轻工业   4篇
无线电   9篇
一般工业技术   10篇
冶金工业   10篇
自动化技术   2篇
  2023年   3篇
  2022年   8篇
  2021年   10篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2003年   1篇
  1999年   1篇
  1998年   7篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有80条查询结果,搜索用时 734 毫秒
21.
Sustainable economic and industrial growth requires safe, sustainable resources of energy. For the future re-arrangement of a sustainable economy to biological raw materials, completely new approaches in research and development, production, and economy are necessary. The ‘first-generation’ biofuels appear unsustainable because of the potential stress that their production places on food commodities. For organic chemicals and materials these needs to follow a biorefinery model under environmentally sustainable conditions. Where these operate at present, their product range is largely limited to simple materials (i.e. cellulose, ethanol, and biofuels). Second generation biorefineries need to build on the need for sustainable chemical products through modern and proven green chemical technologies such as bioprocessing including pyrolysis, Fisher Tropsch, and other catalytic processes in order to make more complex molecules and materials on which a future sustainable society will be based. This review focus on cost effective technologies and the processes to convert biomass into useful liquid biofuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.  相似文献   
22.
Detailed experiments were designed to evaluate the function of load-shock treatment strategy (50 g COD/l; 3 days) for selective enrichment of acidogenic hydrogen (H2) producing consortia in comparison with untreated anaerobic consortia. Experiments performed in suspended-batch mode bioreactors for 520 days illustrated the relative efficiency of load-shock treated consortia in enhancing H2 production (16.64 mol/kg CODR) compared to untreated-parent consortia (3.31 mol/kg CODR). On the contrary, substrate degradation was higher with control operation (ξCOD, 62.86%; substrate degradation rate (SDR), 1.10 kg CODR/m3-day) compared to load-shock culture (52.33%; 0.78 kg CODR/m3-day). Fatty acid composition documented a shift in the metabolic pathway towards acetate formation after applying load-shock, which manifests higher H2 production. Microbial profiling documented a significant alteration in species composition of microbial communities after repeated load-shock applications specific to enrichment of Firmicutes which are favourable for H2 production. Dehydrogenase activity was stabilized with each re-treatment, signifying the adaptation inclination of the biocatalyst towards increased proton shuttling between metabolic intermediates, leading to higher H2 production. Voltammograms of load-shock treated cultures showed a marked shift in oxidation and reduction catalytic currents towards more positive and negative values respectively with increasing scan rate evidencing simultaneous redox-conversion reactions, facilitating proton gradient in the cell towards increased H2 production. Load-shock treatment facilitates direct cultivation of inoculums at higher substrate load without any chemical pretreatment. This study documented the feasibility of controlling microbial metabolic function by application of load-shock treatment either for preparing inoculum for startup of the reactor or to the reactor resident microflora (in situ) during operation whenever required to regain the process performance.  相似文献   
23.
24.
Activated carbons prepared from tamarind nutshell, an agricultural waste by‐product, have been examined for the removal of phenol from aqueous solutions. The activated carbon was prepared by sulfuric acid activation. Both batch and column studies were performed for the sorption of phenol. The kinetic data were fitted to the models of Lagergren, pseudo‐second‐order and intraparticle diffusion, and closely followed the pseudo‐second‐order chemisorption model. The Freundlich and Langmuir isotherm models were well fitted. The solution pH greatly affects the sorption process. The column study results indicate that the sorption of phenol is dependent on the flow rate, the inlet phenol concentration as well as on the particle size of the adsorbent.  相似文献   
25.
26.
The effect of heat-shock treatment to selectively enrich acidogenic, H2 producing consortia was investigated for inoculum preparation and to control the process operation. Long term operation (520 days) in suspended-batch mode bioreactors illustrated relative efficiency and feasibility of heat-shock treated consortia (15.78 mol/kg CODR) in enhancing H2 production (3.31 mol/kg CODR) when compared to parent (control) consortia. On the contrary, substrate degradation was higher in the control operation (ξCOD, 62.86%; substrate degradation rate (SDR), 1.34 kg CODR/m3-day) compared to heat-shock operation (ξCOD, 52.6%; SDR, 1.10 kg CODR/m3-day). Heat-shock pretreatment has resulted in a marked fermentation pathway shift towards acetic-butyric acid type production. The microbial diversity illustrated dominance in the Clostridia class after applying heat-shock pretreatment. The redox catalytic currents and Tafel analysis strongly support the conclusion of an improved biocatalyst performance after pretreatment with regards to H2 production.  相似文献   
27.
We introduce a novel algorithm to reconstruct dynamic magnetic resonance imaging (MRI) data from under-sampled k-t space data. In contrast to classical model based cine MRI schemes that rely on the sparsity or banded structure in Fourier space, we use the compact representation of the data in the Karhunen Louve transform (KLT) domain to exploit the correlations in the dataset. The use of the data-dependent KL transform makes our approach ideally suited to a range of dynamic imaging problems, even when the motion is not periodic. In comparison to current KLT-based methods that rely on a two-step approach to first estimate the basis functions and then use it for reconstruction, we pose the problem as a spectrally regularized matrix recovery problem. By simultaneously determining the temporal basis functions and its spatial weights from the entire measured data, the proposed scheme is capable of providing high quality reconstructions at a range of accelerations. In addition to using the compact representation in the KLT domain, we also exploit the sparsity of the data to further improve the recovery rate. Validations using numerical phantoms and in vivo cardiac perfusion MRI data demonstrate the significant improvement in performance offered by the proposed scheme over existing methods.  相似文献   
28.
A model study is reported to examine the effect of magnetic hydrodynamics polar fluid over a semistretched infinite vertical porous surface in the presence of heat source, temperature, magnetic field, and thermal radiation. The governing dimensional partial differential equations are transformed into an ordinary differential equation set by introducing the similarity variables. The reduced model is numerically solved via Runge–Kutta fourth order along with the shooting technique. The effects of various physical parameters on coefficient of skin friction, microrotation coefficient, and Nusselt number are studied whereas the outcomes are explained through a set of graphs. The results obtained are explained in tabular form and graphs. Prandtl and Hartman's numbers enhance the velocity profile while the opposite behavior is noticed for φ,δ. Higher values of Pr enlarge the angular velocity near the surface. Improved temperature distribution is noticed for higher values of Ha and ϕ, However, a declined behaviour is observed for Pr, δ, and fo.  相似文献   
29.
Epoxidation of karanja (Pongamia glabra) oil by H2O2   总被引:1,自引:0,他引:1  
Epoxidation of karanja oil (KO), a nondrying vegetable oil, was carried out with peroxyacetic acid that was generated in situ from aqueous hydrogen peroxide and glacial acetic acid. KO contained 61.65% oleic acid and 18.52% linoleic acid, respectively, and had an iodine value of 89 g/100 g. Unsaturated bonds in the oil were converted to oxirane by epoxidation. Almost complete epoxidation of ethylenic unsaturation was achieved. For example, the iodine value of the oil could be reduced from 89 to 19 by epoxidation at 30°C. The effects of temperature, hydrogen peroxide-to-ethylenic unsaturation ratio, acetic acid-to-ethylenic unsaturation ratio, and stirring speed on the epoxidation rate and on oxirane ring stability were studied. The rate constant and activation energy for epoxidation of KO were 10−6 L·mol−1·s−1 and 14.9 kcal·mol−1, respectively. Enthalpy, entropy, and free energy of activation were 14.2 kcal·mol−1, −51.2 cal·mol−1·K−1, and 31.1 kcal·mol−1, respectively. The present study revealed that epoxides can be developed from locally available natural renewable resources such as KO.  相似文献   
30.
This work examines the heat transfer properties of magnetohydrodynamic nanofluid flow. Through a similarity conversion, the leading structure of partial differential equations is changed to that of ordinary differential equations. A rigorous mathematical bvp4c methodology is used to generate numerical results. The purpose of this study is to characterize the different temperature, concentration, and velocity limitations on a nanofluid with a magnetic effect that is spinning. The findings for rotating nanofluid flow and heat transfer characteristics of nanoparticles are shown using graphs and tables. The influence of physical factors such as heat transfer rates and skin friction coefficients is studied. When the magnetic parameter M is raised, the velocity of the nanoliquid decreases. A rise in thermal radiation (Rd) causes the temperature graphs to grow substantially, although the concentration profiles exhibit the opposite tendency. The effect of the convective heat transfer factor Bi on temperature is shown to increase as Bi increases, but the concentration distribution decreases as Biot increases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号