首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   526篇
  免费   49篇
  国内免费   8篇
电工技术   2篇
综合类   8篇
化学工业   313篇
金属工艺   7篇
机械仪表   58篇
建筑科学   1篇
轻工业   140篇
无线电   29篇
一般工业技术   22篇
冶金工业   1篇
原子能技术   1篇
自动化技术   1篇
  2023年   11篇
  2022年   11篇
  2021年   193篇
  2020年   28篇
  2019年   26篇
  2018年   19篇
  2017年   8篇
  2016年   27篇
  2015年   30篇
  2014年   28篇
  2013年   26篇
  2012年   24篇
  2011年   15篇
  2010年   7篇
  2009年   15篇
  2008年   6篇
  2007年   9篇
  2006年   10篇
  2005年   12篇
  2004年   9篇
  2003年   4篇
  2002年   14篇
  2001年   7篇
  2000年   3篇
  1999年   6篇
  1998年   8篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
排序方式: 共有583条查询结果,搜索用时 295 毫秒
21.
Loud noise is an environmental stressor of everyday life, which affects different organs and apparati, in particular the cardiovascular system. We have already reported that noise exposure produces significant alterations in the rat myocardium, consisting of mitochondrial damage, which is evident as lysis of the cristae and dilution of the matrix. Since there are high similarities between mouse and human species, the aim of our study was to investigate the effects of acute noise exposure on the mouse heart. We found that noise exposure affects mouse myocardium at similar subcellular sites to those already described in the rat; nonetheless, quantitative analysis of the percentage of altered mitochondria in both species disclosed a clear difference between mouse and rat myocardium, which strongly suggests a different sensitivity to noise stimulus. We hypothesize that the species differences on the extent of myocardial alterations here observed might be due to the zonal pattern of cardiac noradrenergic receptors, which should be the final effectors for noise-induced myocardial changes.  相似文献   
22.
23.
The abundant DNA-binding proteins ABF1 and CPF1 are members of a family of global regulators with diverse chromosomal functions in the yeast Saccharomyces cerevisiae. Recent evidence suggests that these protein factors may be involved in establishing and maintaining well-defined chromatin structures in promoter regions and other genetic elements. We have investigated the involvement of ABF1 and CPF1 in chromatin organization at the QCR8 gene, encoding subunit VIII of the mitochondrial ubiquinol-cytochrome c oxidoreductase. The promoter region of the QCR8 gene contains overlapping binding sites for ABF1 and CPF1. Nucleosome positioning studies indicate that the QCR8 gene is associated with a phased array of nucleosomes under both catabolite-repressed and derepressed growth conditions. Analysis of binding site mutants reveals that both ABF1 and CPF1 are involved in maintaining a nuclease-hypersensitive region in the QCR8 promoter. The chromatin structure at QCR8 during steady-state growth is, however, mainly dependent on binding of ABF1 to the promoter region. Implications of these findings for the role played by ABF1 and CPF1 in the regulation of mitochondrial biogenesis and other processes important for cell growth and division will be discussed.  相似文献   
24.
Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities in current days while the high laser power density demand and low tumor accumulation are key obstacles that have greatly restricted their development. Here, magnetic composite nanoparticles for dual‐modal PTT and PDT which have realized enhanced cancer therapeutic effect by mitochondria‐targeting are reported. Integrating PTT agent and photosensitizer together, the composite nanoparticles are able to generate heat and reactive oxygen species (ROS) simultaneously upon near infrared (NIR) laser irradiation. After surface modification of targeting ligands, the composite nanoparticles can be selectively delivered to the mitochondria, which amplify the cancer cell apoptosis induced by hyperthermia and the cytotoxic ROS. In this way, better photo therapeutic effects and much higher cytotoxicity are achieved by utilizing the composite nanoparticles than that treated with the same nanoparticles missing mitochondrial targeting unit at a low laser power density. Guided by NIR fluorescence imaging and magnetic resonance imaging, then these results are confirmed in a humanized orthotropic lung cancer model. The composite nanoparticles demonstrate high tumor accumulation and excellent tumor regression with minimal side effect upon NIR laser exposure. Therefore, the mitochondria‐targeting composite nanoparticles are expected to be an effective phototherapeutic platform in oncotherapy.  相似文献   
25.
26.
Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of tissues to respond to insulin and leads to disturbed metabolic homeostasis. Mitochondria, as a central player in the cellular energy metabolism, are involved in the mechanisms of IR and T2D. Mitochondrial function is affected by insulin resistance in different tissues, among which skeletal muscle and liver have the highest impact on whole-body glucose homeostasis. This review focuses on human studies that assess mitochondrial function in liver, muscle and blood cells in the context of T2D. Furthermore, different interventions targeting mitochondria in IR and T2D are listed, with a selection of studies using respirometry as a measure of mitochondrial function, for better data comparison. Altogether, mitochondrial respiratory capacity appears to be a metabolic indicator since it decreases as the disease progresses but increases after lifestyle (exercise) and pharmacological interventions, together with the improvement in metabolic health. Finally, novel therapeutics developed to target mitochondria have potential for a more integrative therapeutic approach, treating both causative and secondary defects of diabetes.  相似文献   
27.
Heme oxygenase-1 (HO-1) is a 32 kDa protein which catalyzes the breakdown of heme to free iron, carbon monoxide and biliverdin. The Hmox1 promoter contains numerous consensus sequences that render the gene exquisitely sensitive to induction by diverse pro-oxidant and inflammatory stimuli. In “stressed” astroglia, HO-1 hyperactivity promotes mitochondrial iron sequestration and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure documented in Alzheimer disease, Parkinson disease and certain neurodevelopmental conditions. Glial HO-1 expression may also impact neuroplasticity and cell survival by modulating brain sterol metabolism and the proteasomal degradation of neurotoxic proteins. The glial HO-1 response may represent a pivotal transducer of noxious environmental and endogenous stressors into patterns of neural damage and repair characteristic of many human degenerative and developmental CNS disorders.  相似文献   
28.
Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed.  相似文献   
29.
Mammalian mitochondria synthesize polypeptides crucial for energy generation using ribosomes with a number of unique features. These ribosomes are very protein rich and have very truncated ribosomal RNAs. The bulk of the mammalian mitochondrial ribosome is composed of proteins, only about half of which are homologs of ribosomal proteins found in other translational systems. A number of distinctive features are found in these ribosomes. Among these is a gate-like structure that allows entrance of the primarily leaderless mRNAs that characterize this system. The exit tunnel of the large subunit is also quite unusual and includes a site in which the nascent peptide is visible to solvent prior to the normal exit site. Further, this region of the mitochondrial ribosome is dominated by ribosomal proteins rather than rRNA and is involved in the interaction of the ribosome with the inner membrane where all of the translation products are ultimately located. The proteins of the mitochondrial ribosome appear to play a number of important roles in the cell in addition to their function in protein biosynthesis, including roles in apoptosis and in cell cycle control.  相似文献   
30.
脱氢乙酸钠(sodium dehydroacetate,SD)可有效抑制指状青霉(Penicillium digitatum)的生长,但其作用机制尚不清楚。本实验通过分析不同质量浓度SD(0(对照)、1/2最小抑菌质量浓度(minimum inhibitory concentration,MIC)、MIC)对P. digitatum菌丝体细胞结构和功能(细胞壁、细胞膜和线粒体)的影响,研究SD的抑菌机制。结果表明,SD处理菌丝体30 min时已通过主动运输进入细胞内,且在整个处理期间能维持胞内较高的SD质量浓度;SD处理的菌丝体细胞壁荧光强度和胞外碱性磷酸酶(alkaline phosphatase,AKP)活力与对照无明显差异;而碘化丙啶染色实验结果表明,SD引起菌丝体荧光强度显著增加(P<0.05);此外,SD处理能够降低菌丝体总脂质含量,并提升胞外pH值,表明SD处理对菌丝体细胞膜造成损伤而未对细胞壁造成损伤。此外,SD处理降低了菌丝体线粒体膜电位和能荷水平,增加了Na+/K+-ATPase活力,干扰了细胞能量代谢。SD对金柑果实绿霉病干预实验结果表明,SD处理有效抑制了金柑果实绿霉病的发生,且呈质量浓度依赖效应。综上,SD可通过破坏P. digitatum菌丝体细胞膜和线粒体的结构和功能发挥其抑菌活性,从而降低金柑采后绿霉病的发生。研究结果可为SD应用于金柑采后病害绿色防控提供理论依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号