首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   821篇
  免费   5篇
  国内免费   10篇
电工技术   48篇
综合类   15篇
化学工业   288篇
金属工艺   44篇
机械仪表   22篇
矿业工程   8篇
能源动力   300篇
轻工业   12篇
石油天然气   1篇
无线电   19篇
一般工业技术   43篇
冶金工业   23篇
原子能技术   3篇
自动化技术   10篇
  2023年   11篇
  2022年   18篇
  2021年   28篇
  2020年   24篇
  2019年   26篇
  2018年   23篇
  2017年   23篇
  2016年   15篇
  2015年   14篇
  2014年   25篇
  2013年   46篇
  2012年   28篇
  2011年   99篇
  2010年   71篇
  2009年   72篇
  2008年   52篇
  2007年   54篇
  2006年   36篇
  2005年   21篇
  2004年   24篇
  2003年   11篇
  2002年   11篇
  2001年   11篇
  2000年   11篇
  1999年   8篇
  1998年   11篇
  1997年   2篇
  1996年   11篇
  1995年   9篇
  1994年   9篇
  1993年   8篇
  1992年   8篇
  1991年   9篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有836条查询结果,搜索用时 15 毫秒
31.
This work aims to shed light on the wide dispersion of the values of the area of Pt/C electrodes reported when evaluated by means of the thin-film electrode approach. The effect of the Perfluorosulfonic Ionomer (PFSI) content of the electrodes and the nature of the electrolyte are discussed. The results disclose that the area of the Pt electrodes evaluated by electrochemical techniques is related to the actual PFSI content on the electrode and to the nature of the electrolyte. Using HClO4 as electrolyte, electrode area values are independent of the PFSI content. On the contrary, if experiments are recorded in H2SO4, the electrode area value increases with the increasing PFSI content, irrespectively of the Pt loading. Such effect is ascribed to the interaction of the sulfonic groups from the PFSI with the surface of the Pt nanoparticles, avoiding the strong adsorption of the bisulfate anions.  相似文献   
32.
A semi-empirical non-isothermal model incorporating coupled momentum, heat and mass transport phenomena for predicting the performance of a proton exchange membrane (PEM) water electrolysis cell operating without flow channels is presented. Model input parameters such as electro-kinetics properties and mean pore size of the porous transport layer (PTL) were determined by rotating disc electrode and capillary flow porometry, respectively. This is the first report of a semi-empirical fully coupled model which allows one to quantify and investigate the effect of the gas phase and bubble coverage on PEM cell performance up to very high current densities of about 5 A/cm2. The mass transport effects are discussed in terms of the operating conditions, design parameters and the microstructure of the PTL. The results show that, the operating temperature and pressure, and the inlet water flowrate and thickness of the PTL are the critical parameters for mitigating mass transport limitation at high current densities. The model presented here can serve as a tool for further development and scale-up effort in the area of PEM water electrolysis, and provide insight during the design stage.  相似文献   
33.
La-Si thin films were deposited on stainless steel substrates by magnetron sputtering from pure La and Si targets. The Si/(Si + La) atomic ratio in the films was varied from 43.2 to 59.3% by adjusting the discharge current on the La target. The films had a homogeneous chemical composition down to the substrate and sharp interfaces. Annealing the films in air at 1173 K promotes the formation of apatite-structure La9.33Si6O26 and the diffusion of different species from the film to the substrate and vice-versa, resulting in broadening the interfaces. X-Ray diffraction showed that all the as-deposited films had an amorphous structure. The formation of the LaSi2 phase at intermediate temperatures was observed for the films deposited with higher Si contents while the films deposited with lower Si contents remained amorphous up to the start of the apatite structure crystallization process. The lanthanum silicate apatite-like phase (La9.33Si6O26) was obtained only after annealing at 1173 K, excepted for the film with the lower Si content which is already partially crystallized after annealing at 1073 K. Quite pure La9.33Si6O26 was obtained only after annealing the film with the highest Si content (Si/(Si + La) = 59.3%) although the theoretical Si/(Si + La) atomic ratio for apatite structure lanthanum silicate is 39%. For the other films, La2O3 was always detected when the lanthanum silicate phase was formed. Both phenomena clearly resulted from the strong diffusion of silicon excess towards the stainless steel substrate.  相似文献   
34.
The effect of nickel oxide addition on the sintering behavior and electrical properties of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) as an electrolyte for solid oxide fuel cells was systematically studied. Results suggest that the addition of a small amount (∼1 wt%) of NiO to BZCYYb greatly promoted densification, achieving ∼96% of the theoretical density after sintering at 1350 °C in air for 3 h (reducing the sintering temperature by ∼200 °C). Further, a sample sintered at 1450 °C for 3 h showed high open circuit voltages (OCVs) when used as the electrolyte membrane to separate the two electrodes under typical SOFC operating conditions, indicating that the electrical conductivity of the electrical conductivity of the BZCYYb was not adversely affected by the addition of ∼1 wt% NiO.  相似文献   
35.
The derivatives of 1,3-benzodioxan (DBBD1) and 1,4-benzodioxan (DBBD2) bearing two tert-butyl groups have been synthesized as new redox shuttle additives for overcharge protection of lithium-ion batteries. Both compounds exhibit a reversible redox wave over 4 V vs Li/Li+ with better solubility in a commercial electrolyte (1.2 M LiPF6 dissolved in ethylene carbonate/ethyl methyl carbonate (EC/EMC 3/7) than the di-tert-butyl-substituted 1,4-dimethoxybenzene (DDB). The electrochemical stability of DBBD1 and DBBD2 was tested under charge/discharge cycles with 100% overcharge at each cycle in MCMB/LiFePO4 and Li4Ti5O12/LiFePO4 cells. DBBD2 shows significantly better performance than DBBD1 for both cell chemistries. The structural difference and reaction energies for decomposition have been studied by density functional calculations.  相似文献   
36.
Lithium difluoro (oxalate) borate (LiDFOB) is used as thermal stabilizing and solid electrolyte interface (SEI) formation additive for lithium-ion battery. The enhancements of electrolyte thermal stability and the SEIs on graphite anode and LiFePO4 cathode with LiDFOB addition are investigated via a combination of electrochemical methods, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), as well as density functional theory (DFT). It is found that cells with electrolyte containing 5% LiDFOB have better capacity retention than cells without LiDFOB. This improved performance is ascribed to the assistance of LiDFOB in forming better SEIs on anode and cathode and also the enhancement of the thermal stability of the electrolyte. LiDFOB-decomposition products are identified experimentally on the surface of the anode and cathode and supported by theoretical calculations.  相似文献   
37.
Plasma electrolytic oxidation (PEO) is a specialised but well-developed process which has found applications in aerospace, oil/gas, textile, chemical, electrical and biomedical sectors. A novel range of coatings having technologically attractive physical and chemical properties (e.g. wear- and corrosion-resistance) can be produced by suitable control of the electrolyte as well as electrical parameters of the PEO process. Oxide ceramic films, 3 to 40 μm thick, were produced on 6082 aluminium alloy by DC PEO using 5 to 20 A/dm2 current density in KOH electrolyte with varied concentration (0.5 to 2.0 g/l). Phase analysis (composition and crystallite size) was carried out using X-ray diffraction and TEM techniques. Residual stresses associated with the crystalline coating phase (α-Al2O3) were evaluated using the X-ray diffraction Sin2ψ method. Nanoindentation studies were conducted to evaluate the hardness and elastic modulus. SEM, SPM and TEM techniques were utilised to study surface as well as cross-sectional morphology and nano features of the PEO coatings. Correlations between internal stress and coating thickness, surface morphology and phase composition are discussed. It was found that, depending on the current density and electrolyte concentration used, internal direct and shear stresses in DC PEO alumina coatings ranged from − 302 ± 19 MPa to − 714 ± 22 MPa and − 25 ± 12 MPa to − 345 ± 27 MPa, respectively. Regimes of PEO treatment favourable for the production of thicker coatings with minimal stress level, dense morphology and relatively high content of α-Al2O3 phase are identified.  相似文献   
38.
Lithium-ion batteries for space applications, such as satellites, are subjected to cosmic radiations, in particular, γ-irradiation. In this study, the effects of this radiation on electrolytes and their components used in the lithium-ion batteries are investigated. The conductivity and viscosity of the samples have been measured before and after the irradiation. The modifications are evaluated by spectral analyses such as Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H and 13C NMR), solid phase microextraction-gas chromatography (SPME-GC) and gas chromatography-mass spectroscopy (GC-MS). The experimental results show that only the samples containing vinylene carbonate and/or the lithium salt LiPF6 are degraded by γ-radiation.  相似文献   
39.
The present investigation deals with the fabrication of new poly(vinyl alcohol)/titanium dioxide (PVA/TiO2) nanocomposites (NCs) with different titanium dioxide (TiO2) loading by using ultrasound irradiation. For the improvement of nanoparticles (NPs) dispersion and increasing possible interactions between NPs and PVA, the surface of TiO2 NPs was modified by γ-aminopropyltriethoxy silane. The as-prepared NCs were characterized by spectroscopic, thermogravimetric analysis and electron microscopy methods. The results demonstrate that NPs dispersed homogeneously within the PVA matrix on nanoscale, which could be assigned to the hydrogen and covalent bonds formed between PVA and NPs. The results indicated that heat stability of NCs was improved in the presence of modified TiO2 NPs. The mechanisms of surface modification and a possible mechanism of ultrasonic induced interaction between polymer and NPs have been analyzed.  相似文献   
40.
The effect of an electrolyte additive, succinic anhydride (SA), on the electrochemical performances of a silicon thin-film electrode, which is prepared by radio-frequency magnetron sputtering, is investigated. The introduction of SA into a liquid electrolyte consisting of ethylene carbonate/diethyl carbonate/1 M LiPF6 significantly enhances the capacity retention and coulombic efficiency of the electrode. This improvement in the electrochemical performance of the electrode is attributed to modification of the solid/electrolyte interphase (SEI) layer by the introduction of SA. The differences in the characteristic properties of SEI layers, with or without SA, are explained by analysis with scanning electron microscopy, electrochemical impedance spectroscopy, and X-ray photoelectron spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号