首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   6篇
  国内免费   3篇
电工技术   1篇
金属工艺   1篇
机械仪表   20篇
无线电   3篇
自动化技术   32篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   12篇
  2018年   6篇
  2017年   6篇
  2016年   7篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2011年   2篇
  2006年   1篇
  1987年   1篇
排序方式: 共有57条查询结果,搜索用时 31 毫秒
31.
Event-triggered sampling control is motivated by the applications of embedded microprocessors equipped in the agents with limited computation and storage resources. This paper studied global consensus in multi-agent systems with inherent nonlinear dynamics on general directed networks using decentralised event-triggered strategy. For each agent, the controller updates are event-based and only triggered at its own event times by only utilising the locally current sampling data. A high-performance sampling event that only needs local neighbours’ states at their own discrete time instants is presented. Furthermore, we introduce two kinds of general algebraic connectivity for strongly connected networks and strongly connected components of the directed network containing a spanning tree so as to describe the system's ability for reaching consensus. A detailed theoretical analysis on consensus is performed and two criteria are derived by virtue of algebraic graph theory, matrix theory and Lyapunov control approach. It is shown that the Zeno behaviour of triggering time sequence is excluded during the system's whole working process. A numerical simulation is given to show the effectiveness of the theoretical results.  相似文献   
32.
The problem of event-triggered H filtering for networked Markovian jump system is studied in this paper. A dynamic discrete event-triggered scheme is designed to choose the transmitted data for different Markovian jumping modes. The time-delay modelling method is employed to describe the event-triggered scheme and the network-related behaviour, such as transmission delay, data package dropout and disorder, into a networked Markovian time-delay jump system. Furthermore, a sufficient condition is derived to guarantee that the resulting filtering error system is stochastically stable with a prescribed performance index. A co-design method for the H filter and the event-triggered scheme is then proposed. The effectiveness and potential of the theoretic results obtained are illustrated by a simulation example.  相似文献   
33.
34.
In this study, the problem of event-triggered-based adaptive control (ETAC) for a class of discrete-time nonlinear systems with unknown parameters and nonlinear uncertainties is considered. Both neural network (NN) based and linear identifiers are used to approximate the unknown system dynamics. The feedback output signals are transmitted, and the parameters and the NN weights of the identifiers are tuned in an aperiodic manner at the event sample instants. A switching mechanism is provided to evaluate the approximate performance of each identifier and decide which estimated output is utilised for the event-triggered controller design, during any two events. The linear identifier with an auxiliary output and an improved adaptive law is introduced so that the nonlinear uncertainties are no longer assumed to be Lipschitz. The number of transmission times are significantly reduced by incorporating multiple model schemes into ETAC. The boundedness of both the parameters of identifiers and the system outputs is demonstrated though the Lyapunov approach. Simulation results demonstrate the effectiveness of the proposed method.  相似文献   
35.
This study examines the problem of decentralised event-triggered impulsive synchronisation for the semi-Markovian jump neutral type neural networks with leakage delay and randomly occurring uncertainties. An improved globally asymptotic stability criterion is derived to guarantee impulsive synchronisation of the response systems with the drive systems. In order to reduce the network traffic and the resource of computation, we propose a new decentralised event-triggered scheme for the considered delayed NNs. In order to make full use of the sawtooth structure characteristic of the sampling input delay, a discontinuous Lyapunov functional is proposed. By establishing a suitable Lyapunov–Krasovskii functional (LKF) with triple integral terms and applying Writinger based integral method, auxiliary function based integral inequalities, reciprocal convex approach and improved inequality techniques, a delay dependent stability criterion is derived in terms of linear matrix inequalities (LMIs). Finally, numerical examples are given to illustrate the effectiveness of the proposed results.  相似文献   
36.
This paper deals with the communication problem in the distributed system, considering the limited battery power in the wireless network and redundant transmission among nodes. We design an event-triggered model predictive control (ET-MPC) strategy to reduce the unnecessary communication while promising the system performance. On one hand, for a linear discrete time-invariant system, a triggering condition is derived based on the Lyapunov stability. Here, in order to further reduce the communication rate, we enforce a triggering condition only when the Lyapunov function will exceed its value at the last triggered time, but an average decrease is guaranteed. On the other hand, the feasibility is ensured by minimizing and optimizing the terminal constrained set between the maximal control invariant set and the target terminal set. Finally, we provide a simulation to verify the theoretical results. It's shown that the proposed strategy achieves a good trade-off between the closed-loop system performance and communication rate.   相似文献   
37.
How to efficiently use limited system resources in distributed receding horizon control (DRHC) is an important issue. This paper studies the DRHC problem for a class of dynamically decoupled nonlinear systems under the framework of event-triggering, to efficiently make use of the computation and communication resources. To that end, a distributed periodic event-triggered strategy is designed and a detailed DRHC algorithm is presented. The conditions for ensuring feasibility of the designed algorithm and stability of the closed-loop system are developed, respectively. We show that the closed-loop system is input-to-state stable if the energy bound of the disturbances, the triggering condition and the cooperation matrices fulfill the proposed conditions.  相似文献   
38.
39.
The problem of estimating the crossing points of a continuous-time random process, represented by a sequence of uniformly spaced noisy samples, with a periodic analog carrier signal is of crucial importance in the implementation of pulse-width modulation (PWM) and other event-triggered sampling systems. In this paper, we formally approach this problem from a statistical signal processing perspective under a Bayesian framework. We derive the maximum a posteriori (MAP) estimator of the crossing point from a finite sequence of noisy observations, along with a close approximation based on minimum mean squared error (MMSE) considerations. We also study the Bayesian Cramér-Rao bound (CRB) on attainable mean square estimation error. Finally, simulations of a PWM scenario demonstrate that both the MAP and MMSE estimators approach the CRB and outperform several benchmark estimators. The MMSE is a particularly attractive solution as it offers a computationally efficient approximation to the MAP estimator.  相似文献   
40.
This paper investigates the event-triggered state estimation problem of Markovian jumping impulsive neural networks with interval time-varying delays. The purpose is to design a state estimator to estimate system states through available output measurements. In the neural networks, there are a set of modes, which are determined by Markov chain. A Markovian jumping time-delay impulsive neural networks model is employed to describe the event-triggered scheme and the network- related behaviour, such as transmission delay, data package dropout and disorder. The proposed event-triggered scheme is used to determine whether the sampled state information should be transmitted. The discrete delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. First, we design a state observer to estimate the neuron states. Second, based on a novel Lyapunov-Krasovskii functional (LKF) with triple-integral terms and using an improved inequality, several sufficient conditions are derived. The derived conditions are formulated in terms of a set of linear matrix inequalities , under which the estimation error system is globally asymptotically stable in the mean square sense. Finally, numerical examples are given to show the effectiveness and superiority of the results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号