首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5581篇
  免费   559篇
  国内免费   181篇
电工技术   160篇
综合类   346篇
化学工业   1534篇
金属工艺   143篇
机械仪表   620篇
建筑科学   723篇
矿业工程   113篇
能源动力   1091篇
轻工业   126篇
水利工程   163篇
石油天然气   175篇
武器工业   62篇
无线电   81篇
一般工业技术   448篇
冶金工业   103篇
原子能技术   187篇
自动化技术   246篇
  2024年   11篇
  2023年   87篇
  2022年   148篇
  2021年   212篇
  2020年   240篇
  2019年   236篇
  2018年   178篇
  2017年   231篇
  2016年   280篇
  2015年   255篇
  2014年   424篇
  2013年   438篇
  2012年   381篇
  2011年   592篇
  2010年   455篇
  2009年   439篇
  2008年   389篇
  2007年   367篇
  2006年   257篇
  2005年   213篇
  2004年   170篇
  2003年   124篇
  2002年   79篇
  2001年   41篇
  2000年   23篇
  1999年   8篇
  1998年   11篇
  1997年   8篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1992年   2篇
  1990年   1篇
  1959年   1篇
  1951年   5篇
排序方式: 共有6321条查询结果,搜索用时 156 毫秒
41.
目的 研究气固两相流中固体颗粒间碰撞对冲蚀的影响。方法 使用Eulerian-Lagrangian方法,将气相作为连续相,通过Navier-Stokes方程求解,颗粒平移运动由离散相模型(DPM)求解。颗粒间碰撞运动采用直接模拟蒙特卡罗(DSMC)方法进行模拟,用少量采样颗粒代替真实颗粒计算颗粒间碰撞,碰撞的发生条件通过修正的Nanbu方法判定,碰撞过程遵循颗粒间碰撞动力学模型,采用Grant-Tabakoff随机颗粒-壁面碰撞反弹模型,计算颗粒与壁面的碰撞运动。将颗粒运动信息导入5种不同的冲蚀模型,并将计算与未计算颗粒间碰撞的冲蚀预测模拟结果与实验数据进行对比。结果 颗粒间碰撞位置主要分布在90°弯头外拱侧的颗粒高浓度区,随着颗粒质量流量的增大,颗粒碰撞次数增加,且直管段中碰撞次数占比增大。随着入口速度的增大,颗粒碰撞次数减少。使用DSMC-CFD方法计算的最大冲蚀位置沿弯管外拱轴线向高角度方向偏移,且数值比忽略颗粒间碰撞的CFD方法约低5%~15%,总冲蚀率则两者区别不大。结论 引入DSMC方法计算颗粒间的碰撞,可以节省大量算力。弯管处发生颗粒间碰撞,DSMC-CFD冲蚀预测方法更符合实际,使用DSMC-CFD方法的Oka模型与实验测得值最贴近。  相似文献   
42.
Although single-hole oscillatory columns have been studied since the 1990s, to this day there is an absence of appropriate dimensionless groups to express the hydrodynamic conditions and power requirement for the moving-baffle oscillatory baffled column (OBC). This paper uses computational fluid dynamic (CFD) software coupled with moving overset meshing to aid in the derivation of the first dimensionless oscillatory power number for OBCs. In terms of the moving-baffle OBC, this work marks the first time a power density equation has been derived specifically to account for this column's unique hydrodynamic profile. Equations for period-averaged Reynolds number and period-averaged Strouhal numbers were developed to better estimate the fluid intensity within these moving-baffle columns. This work serves as an example of how complex and challenging flow regimes, such as periodically oscillating flow, can be simplified and analyzed to produce appropriate design equations.  相似文献   
43.
尹成  任轩  屈荷叶  任凯  郭纯 《水泥》2020,(1):58-62
随着社会环保意识的增强,大气污染物的排放标准也日益严格,这给环保工程带来了极大的潜在市场。脱硝反应器设计作为SCR脱硝工艺中除了催化剂的另一核心,在水泥行业没有更好的催化剂被研发出来之前,想要脱硝设备的性能得到极佳的发挥,在高温高尘区布置除尘+脱硝设备已经是工程上的一个选择,而在高尘区要保证催化剂的稳定、高效运行,流场的优化必不可少。本文针对某水泥行业除尘+脱硝项目,采用CFD软件对其流场进行数值模拟,并给出导流板的优化设计方案。结果表明:在电除尘器上进气口布置合适的导流板,使得进入电场的烟气分布均匀;同时在整流格栅前添加导流板,脱硝反应器内的流场也得到了极大改善。因此,采用CFD软件数值模拟对水泥行业除尘+脱硝有着重要的意义。  相似文献   
44.
Current pot ventilation system is designed in a conservative manner to prevent hazardous gases from escaping aluminum smelting pots. Reduction of pot draft is an initiative of both efficiently using waste heat in the exhaust gas and significantly reducing fan power of the ventilation system. This work presents a systematic analysis on the reduction of pot draft and the consequent problem, ie, fugitive emissions from the smelting pot. Numerical models with different length scales are developed to simulate the fluid flow and heat transfer in pots and potroom. The superstructure of a typical aluminum smelting pot is successfully modified to maintain the pot tightness in the reducing pot draft. The results show that the current pot draft could be reduced by 50% at least using the developed technology. The techno-economic analysis of power generation from the waste heat in aluminum smelting pot is made based on organic Rankine cycle (ORC), and the potential benefits of using the pot exhaust gas of both normal and 50% reduced flow rates are estimated. It is found that the levelized energy cost of the optimized ORC system using 50% reduced exhaust gas is 0.048 $/kWh with a system's lifespan of 10 years and 0.038 $/kWh with a lifespan of 15 years while the payback time of investment is 5.2 years.  相似文献   
45.
Pulse tube refrigerators do not have moving parts in the cold section, and they have low vibration, high reliability, and long life. The expander in refrigerators typically has an inverted U or coaxial shape because this attains a wider absorber area, lower height, and compactness. However, the performance of a Stirling-type pulse tube refrigerator is inferior to that of a Stirling refrigerator. Cooling characteristics of the pulse tube refrigerator greatly depend on the shape of the expander. In this study, an inertance-type refrigerator, which uses ambient air for the working gas, was developed to examine the effect of expander shape. This refrigerator model with changeable expander operated with a Stirling cycle, and it was composed of a reciprocating compressor, after-cooler, regenerator, absorber, pulse tube, hot-end, and inertance tube with reservoir. The following expander shapes were tested: in-line, L shape, L-L shape, and coaxial shape. The effect of expander shape on cooling capacity was examined experimentally and numerically using the model pulse tube refrigerator. The results of experiments showed that the L shape expander had the highest performance and the coaxial expander had the lowest performance. In addition, the characteristics of the gas flow in each expander were confirmed by fluid dynamics analysis.  相似文献   
46.
通过CFD模拟技术对50L通气搅拌发酵罐内不同气体分布器的传质混合效果进行气液双相流模拟。首先对发酵罐自带气体分布器进行流场模拟,针对模拟结果提出两种改进气体分布器。结果表明:双层环形气体分布器表现出一种较理想的混合传质效果,为此类发酵罐的优化和放大提供一种有效的技术手段。  相似文献   
47.
A LiOH-promoted Ru-based catalyst was recently reported to have a high TOF of 17.7 s−1 at 623 K, compared to 2.7 s−1 for an un-promoted Ru-based catalyst, and has been reproduced for this study to develop further understanding of the catalyst activity under a range of conditions. The kinetic values were calculated using a Temkin-Pyzhev-like power law rate expression model. Reaction orders, pre-exponential factors (A) and activation energies (E) were calculated for two temperature ranges, 623–748 K, and 748–873 K. The TOF of this catalyst at 623 K is not similar to that previously reported, being only 1.6 s−1 in this study. A follow-up CFD analysis supports the fact that the kinetic model effectively describes performance of the catalyst at a range of temperatures and pressures, and can be used in the future on similar catalysts. H2 partial pressure has an inhibitory effect on the rate of decomposition of NH3 at all temperatures, not just near or below 673 K as previously proposed in the literature, however equilibrium decomposition is still possible with sufficient catalyst loading.  相似文献   
48.
Thermal impacts are the major concern for the designs of electrolyte of Solid Oxide fuel cells (SOFCs) due to the high temperature operating conditions. In this study, the coupling dynamics of electrochemical reacting flows with heat transfer and generations of thermal strains and stresses (thermal impact) of solid electrolyte and porous electrodes are investigated in a single SOFC by numerical simulations. Modeling results from a test case show that the coupling is necessary as the electrochemical and thermal properties of the cell strongly depends on temperature, meanwhile, the thermal strains and stresses on temperature gradients. The differences in current density and thermal strain gradients predicted by coupling and decoupling simulations are as larger as 20% because of the strong dependents of ionic conductivity of the electrolyte material on temperature, the maximum thermal strain, thermal stresses, and temperature are all about 5%. It is identified that the high operation voltage benefits to the thermal strain, which decreases 20% when the cell operating from 0.5 V–0.7 V.  相似文献   
49.
Maize is an important foodstuff in many countries, and one of most susceptible crops to mold and aflatoxin contamination, which results in considerable postharvest losses and is a burden to consumers’ health, especially in developing countries. The timely drying of harvested maize is essential to halt mold development, ensuring safe storage. The effect of the incorporation of a superabsorbent polymer (SAP) as desiccant in a maize dryer was studied using computational fluid dynamics simulations which accounted for heat and mass transfer between maize, SAP and air. The adsorption capacity and adsorption rate of a commercial SAP material were experimentally determined at different temperature and relative humidity levels, which served as basis for the adsorption model required in the simulations. A maize bulk with SAP packages distributed in it was modeled. Results showed that the SAP material increases the drying rate substantially, particularly in the upper bulk zone where the air reaching it is dehumidified the most. The maize closer to the upper bulk surface starts drying from the beginning of the process instead of lagging for hours or days before the drying front reaches it. An inconvenience of the SAP material is the tendency of granules to swell and stick together as moisture reaches a threshold, which may reduce its performance. Thus, provided this issue is resolved or minimized, SAP materials could successfully assist the rapid drying of maize and other crops. They may also be used during storage to avoid rewetting of the crops during periods of high relative humidity.  相似文献   
50.
《水科学与水工程》2020,13(3):233-242
Due to limited flow capacity and the instability of the asymmetric structure of traditional baffle dropshafts, a novel baffle dropshaft with a symmetric structure, adopting the construction shield well directly, is proposed for large-range flow discharge in deep tunnel drainage systems. In this study, a two-phase flow field of the novel baffle dropshaft with three different baffle spacings was simulated at seven different flow rates with a three-dimensional (3D) numerical model verified with experiments, to study hydraulic characteristics of this novel baffle dropshaft. The results show that the novel baffle dropshaft has a remarkable energy dissipation effect. Baffle spacing of the novel baffle dropshaft has a greater effect on flow patterns and baffle pressure distributions than the comprehensive energy dissipation rate. Flow rate is a critical issue for the selection of baffle spacing in the design. Some guidance on baffle spacing selection and structure optimization for the application of this novel baffle dropshaft in deep tunnel drainage systems is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号