首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16778篇
  免费   2587篇
  国内免费   2106篇
电工技术   1772篇
综合类   2896篇
化学工业   857篇
金属工艺   166篇
机械仪表   1070篇
建筑科学   1756篇
矿业工程   191篇
能源动力   382篇
轻工业   154篇
水利工程   441篇
石油天然气   273篇
武器工业   225篇
无线电   2453篇
一般工业技术   2402篇
冶金工业   101篇
原子能技术   103篇
自动化技术   6229篇
  2024年   23篇
  2023年   252篇
  2022年   315篇
  2021年   365篇
  2020年   612篇
  2019年   582篇
  2018年   563篇
  2017年   717篇
  2016年   797篇
  2015年   693篇
  2014年   885篇
  2013年   1384篇
  2012年   1302篇
  2011年   1228篇
  2010年   948篇
  2009年   1040篇
  2008年   1078篇
  2007年   1269篇
  2006年   1054篇
  2005年   973篇
  2004年   781篇
  2003年   667篇
  2002年   560篇
  2001年   571篇
  2000年   538篇
  1999年   388篇
  1998年   314篇
  1997年   308篇
  1996年   237篇
  1995年   214篇
  1994年   173篇
  1993年   133篇
  1992年   124篇
  1991年   93篇
  1990年   74篇
  1989年   48篇
  1988年   31篇
  1987年   10篇
  1986年   14篇
  1985年   7篇
  1984年   17篇
  1983年   8篇
  1982年   15篇
  1981年   11篇
  1980年   17篇
  1979年   12篇
  1978年   12篇
  1977年   10篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
This article introduces a new class of functional-coefficient predictive regression models, where the regressors consist of auto-regressors and latent factor regressors, and the coefficients vary with certain index variable. The unobservable factor regressors are estimated through imposing an approximate factor model on high dimensional exogenous variables and subsequently implementing the classical principal component analysis. With the estimated factor regressors, a local linear smoothing method is used to estimate the coefficient functions (with appropriate rotation) and obtain a one-step ahead nonlinear forecast of the response variable, and then a wild bootstrap procedure is introduced to construct the prediction interval. Under regularity conditions, the asymptotic properties of the proposed methods are derived, showing that the local linear estimator and the nonlinear forecast using the estimated factor regressors are asymptotically equivalent to those using the true latent factor regressors. The developed model and methodology are further generalized to the factor-augmented vector predictive regression with functional coefficients. Finally, some extensive simulation studies and an empirical application to forecast the UK inflation are given to examine the finite-sample performance of the proposed model and methodology.  相似文献   
42.
In this article, we develop proportional, fractional-integral, and derivative () controllers for the regulation and tracking problems of nonlinear systems. The analytic results are obtained by extending the passivity-based approach to include fractional operators. Robustness under parametric uncertainty is dealt with by a combination with an adaptive scheme. It is also shown their robustness under additive noise and their robustness under uncertainty in the derivation order. The advantages in the controlled system performance and in the control energy consumption in comparison to classic PI and proportional integral derivative controllers are illustrated for the quadratic boost converter and a benchmark system in the literature.  相似文献   
43.
This study derived a novel computation algorithm for a mechanical system with multiple friction contact interfaces that is well-suited to the investigation of nonlinear mode characteristic of a coupling system. The procedure uses the incremental harmonic balance method to obtain the nonlinear parameters of the contact interface. Thereafter, the computed nonlinear parameters are applied to rebuild the matrices of the coupling system, which can be easily solved to calculate the nonlinear mode characteristics by standard iterative solvers. Lastly, the derived method is applied to a cycle symmetry system, which represents a shaft–disk–blade system subjected to dry friction. Moreover, this study analyzed the effects of the tuned and mistuned contact features on the nonlinear mode characteristics. Numerical results prove that the proposed method is particularly suitable for the study of nonlinear characteristics in such nonlinear systems.  相似文献   
44.
This paper focuses on the problem of adaptive robust tracking control for a class of uncertain multiple-input and multiple-output (MIMO) nonlinear system. Unlike most previous research studies, model dynamics, disturbances, and state variables are unknown in this paper. A novel observer-based direct adaptive neuro-sliding mode control approach is proposed of which the only required knowledge is the system output. By incorporating the Adaptive Linear Neuron (ADALINE) neural network (NN) into the conventional sliding mode observer, the proposed observer has favorable performance. In the controller, a radial basis function (RBF) NN is constructed to approximate the unknown equivalent control laws and the estimation of the sliding surface is applied as the input. A gain-adaptation sliding mode term is designed to enhance the robustness of the control system. Besides, the free parameters of the ADALINE NN and the RBFNN are updated online by adaptive laws to obtain optimal approximation performance. Finally, the comparative simulations are given to show the effectiveness and merits of proposed scheme.  相似文献   
45.
The development of Jacobian-free software for solving problems formulated by nonlinear partial differential equations is of increasing interest to simulate practical engineering processes. For the first time, this work uses the so-called derivative-free spectral algorithm for nonlinear equations in the simulation of flows in porous media. The model considered here is the one employed to describe the displacement of miscible compressible fluid in porous media with point sources and sinks, where the density of the fluid mixture varies exponentially with the pressure. This spectral algorithm is a modern method for solving large-scale nonlinear systems, which does not use any explicit information associated with the Jacobin matrix of the considered system, being a Jacobian-free approach. Two dimensional problems are presented, along with numerical results comparing the spectral algorithm to a well-developed Jacobian-free inexact Newton method. The results of this paper show that this modern spectral algorithm is a reliable and efficient method for simulation of compressible flows in porous media.  相似文献   
46.
This paper presents an adaptive backstepping-based multilevel approach for the first time to control nonlinear interconnected systems with unknown parameters. The system consists of a nonlinear controller at the first level to neutralize the interaction terms, and some adaptive controllers at the second level, in which the gains are optimally tuned using genetic algorithm. The presented scheme can be used in systems with strong couplings where completely ignoring the interactions leads to problems in performance or stability. In order to test the suitability of the method, two case studies are provided: the uncertain double and triple coupled inverted pendulums connected by springs with unknown parameters. The simulation results show that the method is capable of controlling the system effectively, in both regulation and tracking tasks.  相似文献   
47.
This paper deals with adaptive nonlinear identification and trajectory tracking problem via dynamic multilayer neural network with different time scales. By means of a Lyapunov‐like analysis, we determine stability conditions for the on‐line identification. Then, a sliding mode controller is designed for trajectory tracking with consideration of the modeling error and disturbance. The main contributions of the paper lie in the following aspects. First, we extend our prior identification results of single‐layer dynamic neural networks with multi‐time scales to those of multilayer case. Second, the e‐modification in standard use in adaptive control is introduced in the on‐line update laws to guarantee bounded weights and bounded identification errors. Third, the potential singularity problem in controller design is solved by using new update laws for the NN weights so that the control signal is guaranteed bounded. The stability of proposed controller is proved by using Lyapunov function. Simulation results demonstrate the effectiveness of the proposed algorithm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
48.
This paper presents robust and adaptive boundary control designs to stabilize the two‐dimensional vibration of hybrid shaft model. The hybrid shaft is mathematically represented by a set of partial differential equations, governing the shaft vibrations, coupled to ordinary differential equations, describing rigid body spinning and dynamic boundary conditions. The control objective is to stabilize the transverse vibrations of the perturbed shaft while regulating the spinning rate. To achieve this, the paper first establishes robust boundary control laws that fulfil the control objective in the presence of modeling uncertainties and external disturbances operating over the shaft domain and boundary. Lyapunov‐based analyses show that the proposed robust control exponentially stabilizes the shaft with vanishing distributive perturbations, while assuring ultimately bounded vibrations in the case of nonvanishing perturbations. Then, adaptive control philosophy is utilized to achieve redesigned robust controllers that only use online adaptation of control gains without acquiring the knowledge of bounds on perturbations, as well as dynamic parameters. An advantage of this design is avoiding an overconservative robust control law, which may induce poor stability and chattering in tackling system perturbations with unknown upper bounds. Simulations through finite element method illustrate the results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
49.
This paper investigates the stability of n-dimensional fractional order nonlinear systems with commensurate order 0 <α<2. By using the Mittag-Leffler function, Laplace transform and the Gronwall–Bellman lemma, one sufficient condition is attained for the local asymptotical stability of a class of fractional order nonlinear systems with order lying in (0, 2). According to this theory, stabilizing a class of fractional order nonlinear systems only need a linear state feedback controller. Simulation results demonstrate the effectiveness of the proposed theory.  相似文献   
50.
We present a new tracking controller for neuromuscular electrical stimulation (NMES), which is an emerging technology that artificially stimulates skeletal muscles to help restore functionality to human limbs. The novelty of our work is that we prove that the tracking error globally asymptotically and locally exponentially converges to zero for any positive input delay, coupled with our ability to satisfy a state constraint imposed by the physical system. Also, our controller only requires sampled measurements of the states instead of continuous measurements and allows perturbed sampling schedules, which can be important for practical purposes. Our work is based on a new method for constructing predictor maps for a large class of time‐varying systems, which is of independent interest. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号