首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   0篇
  国内免费   1篇
化学工业   64篇
金属工艺   2篇
机械仪表   11篇
建筑科学   11篇
矿业工程   1篇
能源动力   4篇
轻工业   7篇
无线电   1篇
一般工业技术   27篇
冶金工业   2篇
自动化技术   7篇
  2023年   4篇
  2022年   2篇
  2021年   10篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   9篇
  2016年   6篇
  2015年   1篇
  2014年   12篇
  2013年   9篇
  2012年   8篇
  2011年   11篇
  2010年   10篇
  2009年   8篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
51.
林桂淋 《福建建筑》2014,(11):77-79
各种不规则建筑装修脚手架的科学设计与精心施工,是不断涌现的各类不规则大型建筑体能够有效的保证施工安全、满足进度要求、节约建筑成本的前提。本文结合漳州市体育场幕墙装修脚手架的施工实践,阐述了不规则建筑体装修脚手架如何设计与施工才能更有效的保证架体在施工过程中的安全性和可操作性。  相似文献   
52.
《Ceramics International》2017,43(2):1657-1668
In this research, novel porous composite scaffolds consisting of chitin, chitosan and nano diopside powder were prepared using the freeze-drying method. The prepared nanocomposite scaffolds were characterized by SEM, XRD, BET, TGA and FT-IR techniques. In addition, swelling, degradation and biomineralization capability, cell viability and cell attachment of the composite scaffolds were evaluated. The results indicated better swelling and degradation properties of such scaffolds their ability to become bioactive. Cytocompatibility of the scaffolds were assessed by MTT assay and cell attachment studies using Human Gingival Fibroblast cells. Cell viability studies demonstrated no sign of toxicity and cells were found to be attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffolds could be a potential candidate for tissue engineering.  相似文献   
53.
There are numerous methods for producing scaffolds to be applied in bone tissue engineering. However, the best method of scaffold production is essential to consider, with respect to their chemical composition and mechanical and structural properties, so that debris is not produced when the scaffolds are evaluated in vitro or in vivo.The primary aim of the present investigation was to produce six novel β-TCP scaffold compositions, using sodium chloride as a porogen, with two different particle sizes, measuring 1–2 mm and 750 mm-1mm, and at varied concentrations (30, 50, and 70 wt %). Physical, chemical, mechanical, and in vitro characterizations were then performed on each scaffold composition, using artificial saliva, for 7 and 14 days, with promising results. The XRD diffractograms showed the formation of two new crystalline phases (NaCaPO4 and Ca5[PO4]3Cl) in the scaffolds, after their production. In addition, scaffold porosity, Young's modulus, and the maximum resistance of compression values were in the trabecular bone range and the in vitro test, using artificial saliva, was favorable in relation to scaffold bioactivity.  相似文献   
54.
为使抗骨结核药物在病灶区长期维持一定浓度,并促进术后缺损处的骨修复,应用羟基磷灰石、聚乙烯醇、丝素蛋白作为药物载体材料,结合自制机械式挤出装置制备同轴梯度骨组织工程支架。为使骨组织工程支架顺利植入体内,且保证支架负载的药物持续缓慢地释放,现对药物载体材料骨组织工程支架降解性能进行测试。研究发现降解10周后,无丝素蛋白的单轴支架的降解率为40.14%,同轴骨组织工程支架降解率为28.15%,说明复合丝素后降解速率明显变缓,这为药物长期释放提供可能。降解10周后,降解液pH值为6.8,溶液呈弱酸性。高倍扫描电镜图显示同轴骨组织工程支架微孔结构分布均匀,孔径尺寸随降解时间延长不断变大,可为新骨生长提供空间。力学实验测试结果表明同轴骨组织工程支架降解10周后抗压强度是12.61MPa,满足人体松质骨承载要求。  相似文献   
55.
《钢结构》2011,(5):77
对具有不同升降高度、升降机数量和杰克延性的3+3支撑系统的足尺试验进行数值模拟,分析支撑系统性能。介绍了模拟栓接节点、半刚性梁连接及底板偏心的方法。基于Ramberg-Osgood方程,考虑材料非线性,并考虑了轴线不直、表面与轴线不垂直等初始几何缺陷。通过足尺试验得到的破坏荷载和荷载-位移曲线,对非线性分析得到的极限荷载进行修正。数值结果与试验很吻合,表明采用几何非线性和材料非线性分析能很好地研究支撑系统的性能和极限承载力。分析了支撑系统模拟中的一些难题,建立了底板、U型头、栓接节点的力学模型。  相似文献   
56.
Biodegradable porous nanocomposite scaffolds of poly(lactide-co-glycolide) (PLGA) and L-lactic acid (LAc)oligomer surface-grafted hydroxyapatite nanoparticles (op-HA) with a honeycomb monolith structure were fabricated with the single-phase solution freeze-drying method. The effects of different freezing temperatures on the properties of the scaffolds, such as microstructures, compressive strength, cell penetration and cell proliferation were studied. The highly porous and well interconnected scaffolds with a tunable pore structure were obtained. The effect of different freezing temperature (4℃, -20℃, -80℃ and -196℃) was investigated in relation to the scaffold morphology, the porosity varied from 91.2% to 83.0% and the average pore diameter varied from (167.2 ± 62.6) μm to (11.9± 4.2)μm while the σ10 increased significantly. The cell proliferation were decreased and associated with the above-mentioned properties. Uniform distribution of op-HA particles and homogeneous roughness of pore wall surfaces were found in the 4℃ frozen scaffold. The 4℃ frozen scaffold exhibited better cell penetration and increased cell proliferation because of its larger pore size, higher porosity and interconnection. The microstructures described here provide a new approach for the design and fabrication of op-HA/PLGA based scaffold materials with potentially broad applicability for replacement of bone defects.  相似文献   
57.
《Ceramics International》2022,48(5):5908-5921
Over the last few decades, extensive research has been carried out in the field of bioactive scaffolds as replacement material in bone-tissue engineering. The scaffolds have been fabricated employing a combination of biodegradable polymers (due to their biocompatibility and adaptive degradation) and bioactive glass (to impart strength and bioactivity). In this review, a detailed study on the mechanical behavior of polymer-bioactive glass scaffold has been conducted, revealing insufficient strength compared to human cortical bone. The impact of ceramic filler content on the in-vitro bioactivity and biodegradability of scaffold have been discussed. Finally, the rationale and approach for fabricating these 3-D scaffolds with well-distributed and interconnected pores have been reviewed.  相似文献   
58.
In this study, a series of electrospun chitosan/polyethylene oxide (PEO) nanofibrous scaffolds containing different amount of cerium-doped bioactive glasses (Ce-BGs) have been fabricated and proposed for tissue engineering applications. On a biological level, higher 8Ce-BG content significantly improved cytocompatibility of the scaffolds. Moreover, results of fibroblast cell culture study showed that greater 8Ce-BG content could enhance cell attachment and cell expansion on fiber mesh. Characterization of the scaffolds revealed that increasing 8Ce-BG content caused bioactive glass nanoparticles to agglomerate at a higher rate. The SEM mapping revealed thorough dispersion of submicrometric clusters in all areas of the polymeric matrix. Contact angle measurements showed that increasing 8Ce-BG/CH ratio from 0 to 10 (wt.%) improved wettability of the scaffold significantly. However, by increasing the ratio beyond 10 (wt.%), the wettability values decreased gradually. In conclusion, it was found that increasing 8Ce-BG/CH weight ratio up to 40 (wt.%) in the scaffold system was practical and useful for soft tissue engineering applications.  相似文献   
59.
Solid oxide fuel cells (SOFCs) are the most efficient devices for the direct conversion of the chemical energy stored in fuels such as hydrogen and hydrocarbons into electricity. The development of highly efficient and robust SOFCs requires cathodes and anodes with high electrocatalytic activity for O2 reduction and direct oxidation of hydrocarbon fuels, respectively. Nanoscale engineering of electrode structures via metal salt solution impregnation or infiltration attracts increasing attention as the most effective way to develop highly active and advanced electrode structures for SOFCs. The infiltration method opens a new horizon in the advanced electrode development as the method expands the set of variable electrode materials combinations with the elimination of thermal expansion mismatch and the suppression of potential detrimental reactions between electrode and electrolyte materials. In this article, the advances and challenges in the development of nanoscale and nano-structured electrodes and the fundamental understanding of the remarkable enhancement in the electrode performance are reviewed and discussed with primary focus on the progress and status of the field in the last 5 years.  相似文献   
60.
《Ceramics International》2020,46(14):21902-21909
Bioceramics have been widely used for many years to restore and replace hard tissues including bones, teeth and mineralized matrices such as calcified cartilages at osteochondral interfaces, mainly because of their physicochemical similarity with these tissues. Calcium silicate based bioceramics have been shown to possess high bioactivity due to having high apatite-forming ability and stimulating cell proliferation, as well as biodegradability at rates appropriate to hard tissue regeneration. The outstanding biological properties of these ceramics have made them the most studied hard tissue engineering biomaterials along with calcium phosphates and bioactive glasses. Baghdadite is a calcium silicate containing zirconium ions which promotes the proliferation and differentiation of human osteoblasts and consequently increases mineral metabolism and ossification. Recently, it has attracted considerable attention in academic community and widely studied in the form of porous scaffolds, coatings, bone cement and void fillers, microspheres and nanoparticles mostly in orthopedic, dental and maxillofacial applications. This review paper is aimed to summarize and discuss the most relevant studies on the mechanical properties, apatite formation ability, dissolution behavior, and in vitro and in vivo biological properties of baghdadite as a biomaterial for hard tissue regeneration applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号