首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127338篇
  免费   11089篇
  国内免费   7870篇
电工技术   8788篇
技术理论   2篇
综合类   8572篇
化学工业   24578篇
金属工艺   7815篇
机械仪表   9835篇
建筑科学   5573篇
矿业工程   2694篇
能源动力   4155篇
轻工业   7193篇
水利工程   1382篇
石油天然气   5312篇
武器工业   1080篇
无线电   15201篇
一般工业技术   17425篇
冶金工业   2760篇
原子能技术   1404篇
自动化技术   22528篇
  2024年   227篇
  2023年   2043篇
  2022年   2382篇
  2021年   4007篇
  2020年   3683篇
  2019年   3684篇
  2018年   3327篇
  2017年   4118篇
  2016年   4486篇
  2015年   4717篇
  2014年   6541篇
  2013年   7209篇
  2012年   7590篇
  2011年   9316篇
  2010年   7536篇
  2009年   8498篇
  2008年   7920篇
  2007年   8547篇
  2006年   7877篇
  2005年   6845篇
  2004年   6035篇
  2003年   5762篇
  2002年   4888篇
  2001年   3487篇
  2000年   3094篇
  1999年   2419篇
  1998年   1765篇
  1997年   1383篇
  1996年   1209篇
  1995年   1183篇
  1994年   1027篇
  1993年   851篇
  1992年   670篇
  1991年   408篇
  1990年   267篇
  1989年   272篇
  1988年   180篇
  1987年   126篇
  1986年   129篇
  1985年   95篇
  1984年   81篇
  1983年   57篇
  1982年   60篇
  1981年   63篇
  1980年   34篇
  1979年   29篇
  1978年   26篇
  1977年   21篇
  1976年   27篇
  1975年   18篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
Although hybrid Petri net (HPN) is a popular formalism in modelling hybrid production systems, the HPN model of large scale systems gets substantially complicated for analysis and control due to large dimensionality of such systems. To overcome this problem, a typical approach is to decompose the net into subnets and then control the plant through hierarchical or decentralized structures. Although this concept has been widely discussed in the literature for discrete PNs, there is a lack of research for HPNs. In this paper, a new method of decomposition of first-order hybrid Petri nets (FOHPNs) is proposed first and then the hierarchical control of the subnets through a coordinator is introduced. The advantage of using the proposed approach is validated by an existing example. A sugar milling case study is analysed by using a decomposed FOHPN model and the optimization results are compared against the results of the approaches presented in other papers. Simulation results show not only an improvement in production rate, but also show the ability to control the plant online. In addition, by using the hierarchical control structure for an FOHPN model, it is possible to reduce the cost of communication links, improve the reliability of the system, maintain the plant locally, and partially redesign the system.  相似文献   
62.
Inspired by biological systems in which damage triggers an autonomic healing response, a polymer composite material that can heal itself when cracked has been developed. In this work, compression and tensile properties of a self-healed fibre reinforced epoxy composites were investigated. Microencapsulated epoxy and mercaptan healing agents were incorporated into a glass fibre reinforced epoxy matrix to produce a polymer composite capable of self-healing. The self-repair microcapsules in the epoxy resin would break as a result of microcrack expansion in the matrix, and letting out the strong repair agent to recover the mechanical strength with a relative healing efficiency of up to 140% which is a ratio of healed property value to initial property value or healing efficiency up to 119% if using the healed strength with the damaged strength.  相似文献   
63.
This article reviews the current state of the art in the design of traditional uni-directional fibre laminate construction; beyond the ubiquitous balanced and symmetric design. A ply termination algorithm is then employed to develop permissible tapered designs, with single-ply terminations and ply contiguity constraints, which are free from undesirable changes in mechanical coupling characteristics. More importantly however, is the fact that all tapered designs have immunity to thermal warping distortion; which include all combinations of anti-symmetric (or cross-symmetric), non-symmetric and symmetric angle- and cross-ply sub-sequence symmetries. Tapered designs are presented for laminates with fully uncoupled properties, and those possessing extension–shearing and/or bending–twisting coupling. Such designs represent typical fuselage skin thicknesses, i.e., with between (n =) 12 and 16 plies, but due consideration is also given to new fuselage design concepts with grid-stiffeners and/or geodesic stiffener arrangements, for which thinner designs (n  8) are of interest.  相似文献   
64.
The study presents the preparation of the new magnetic nanocomposite based on PLGA and magnetite. The PLGA used to obtain the magnetic nanocomposites was synthesized by the copolymerization of lactic acid with glycolic acid, in the presence of tin octanoate [Sn(Oct)2] as catalyst, by polycondensation procedure. Magnetite was obtained by co-precipitation from aqueous salt solutions FeCl2/FeCl3. The particles size of magnetite was 420 nm, and the saturation magnetization 62.78 emu/g, while the PLGA/magnetite nanocomposite size was 864 nm and the saturation magnetization 39.44 emu/g. The magnetic nanocomposites were characterized by FT-IR, DLS technique, SEM, VSM and simultaneous thermal analyses (TG–FTIR–MS). The polymer matrix PLGA acts as a shell and carrier for the active component, while magnetite is the component which makes targeting possible by external magnetic field manipulation. Based on the gases resulted by thermal degradation of PLGA copolymer, using the simultaneous analysis TG–FTIR–MS, a possible degradation mechanism was proposed.  相似文献   
65.
In recent years, many tidal turbine projects have been developed using composites blades. Tidal turbine blades are subject to ocean forces and sea water aggressions, and the reliability of these components is crucial to the profitability of ocean energy recovery systems. The majority of tidal turbine developers have preferred carbon/epoxy blades, so there is a need to understand how prolonged immersion in the ocean affects these composites. In this study the long term behaviour of different carbon/epoxy composites has been studied using accelerated ageing tests. A significant reduction of composite strengths has been observed after saturation of water in the material. For longer immersions only small further changes in these properties occur. No significant changes have been observed for moduli nor for composite toughness. The effect of sea water ageing on damage thresholds and kinetics has been studied and modelled. After saturation, the damage threshold is modified while kinetics of damage development remain the same.  相似文献   
66.
An experimental investigation on the mechanism of porosity formation during the laser joining of carbon fiber reinforced polymer (CFRP) and steel is presented. The porosity morphology and distribution were characterized by optical and scanning electron microscopy, and the thermal pyrolysis behaviors were investigated by thermal analysis and designed back-side cooling experiments. The results show that there are two types of porosities in CFRP. Porosity I only appears when the heat input is more than 77.8 J/mm. It has a smooth inner wall and distributes near the bonding interface between CFRP and steel at the central area of melted zone, which is caused by gaseous products such as CO2, NH3, H2O, and hydrocarbons produced by the pyrolysis of CFRP. Porosity II can be seen under all joining conditions. It has a rough inner wall and distributes far away from the bonding interface, concentrating at the final solidification locations. Porosity II is caused by the shrinkage of melted CFRP during solidification stage.  相似文献   
67.
In this work, TiO2 nanoparticles are surface modified by NH2-terminated organic moieties arised from 4,4′-methylene diphenyl diisocyanate (MDI). These nanoparticles are incorporated into ether-based segmented polyurethane (SPU) matrix. MDI is utilized as monomer together with poly(tetramethylene oxide) (PTMO) comonomer for preparing the final polymer as well. The NH2-functionalized TiO2 nanoparticles are covalently linked to the NCO terminals of the resulting SPU macromolecules during film preparation stage. Therefore, in addition to butylene glycol, these surface modified nanoparticles with enhanced organophilicity could play the role of the second chain extender of NCO-capped SPU macromolecules through formation of urea linkages. Optical and thermal behaviors of the transparent and flexible film (SPU/TiO2–MDI) is compared with those of unmodified TiO2 (SPU/TiO2) and TiO2-unloaded SPU films. Though the particle loading is only 5 wt.%, incorporation of TiO2 and TiO2–MDI nanoparticles into the SPU polymer enhances significantly the light absorption in UV region at 300–400 nm. SEM images of the prepared films clearly show a considerable decrease in particle aggregation for TiO2–MDI into SPU matrix compared to that of unmodified TiO2. TG analyses indicate a one-step decomposition pattern with onset temperatures of about 360 and 380 °C for neat SPU and SPU/TiO2–MDI, respectively. Moreover, DTA thermograms of both nanocomposites show obviously two exothermic phase transitions in the thermal range of 330–440 °C.  相似文献   
68.
通过制备不同晶相结构〔单斜相(m-ZrO_2)、四方相(t-ZrO_2)和无定型(a-ZrO_2)〕ZrO_2载体,再通过沉积沉淀法制得Cu/m-ZrO_2、Cu/t-ZrO_2和Cu/a-ZrO_2催化剂,分别用于催化二乙醇胺脱氢合成亚氨基二乙酸反应。采用XRD、氮气物理吸附脱附、XPS、H_2-TPR、CO_2-TPD对催化剂的结构进行了表征。结果表明,Cu/m-ZrO_2催化剂界面更加有利于Cu~+/Cu~0稳定存在,具有更多的碱性位点,且抗氧化性较好。在二乙醇胺脱氢反应中,Cu/m-ZrO_2催化剂性能最好,反应时间为2.5 h,亚氨基二乙酸收率为97.64%。  相似文献   
69.
The presented article characterized microstructural aspects of thermal barrier coatings (TBCs) analysis using methods of electron microscopy such as electron backscatter diffraction (EBSD), transmission/scanning electron microscopy (S/TEM), and TEM. The analyzed TBC system is based on gadolinium zirconate deposited by air plasma spraying method, and additionally, it was subjected to an oxidation test for 500 hr at a temperature of 1,100°C. Moreover, the morphological characterization of feedstock powder was showed. EBSD analysis revealed the inhomogeneity of feedstock materials in the form of complex phase composition. In the case of deposited coating, this method was used to characterize the crystallite size of zirconate coating and phase composition of thermally grown oxide zone. S/TEM and TEM analysis showed morphological details of this zone but not revealed such phase as perovskite oxide of GdAlO3 type.  相似文献   
70.
Thermal barrier coatings (TBCs) play a pivotal role in protecting the hot structures of modern turbine engines in aerospace as well as utility applications. To meet the increasing efficiency of gas turbine technology, worldwide research is focused on designing new architecture of TBCs. These TBCs are mainly fabricated by atmospheric plasma spraying (APS) as it is more economical over the electron beam physical vapor deposition (EB-PVD) technology. Notably, bi-layered, multi-layered and functionally graded TBC structures are recognized as favorable designs to obtain adequate coating performance and durability. In this regard, an attempt has been made in this article to highlight the structure, characteristics, limitations and future prospects of bi-layered, multi-layered and functionally graded TBC systems fabricated using plasma spraying and its allied techniques like suspension plasma spray (SPS), solution precursor plasma spray (SPPS) and plasma spray –physical vapor deposition (PS-PVD).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号