首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15638篇
  免费   341篇
  国内免费   208篇
电工技术   847篇
技术理论   1篇
综合类   309篇
化学工业   1846篇
金属工艺   433篇
机械仪表   615篇
建筑科学   1789篇
矿业工程   273篇
能源动力   4935篇
轻工业   203篇
水利工程   78篇
石油天然气   211篇
武器工业   33篇
无线电   1030篇
一般工业技术   1286篇
冶金工业   524篇
原子能技术   411篇
自动化技术   1363篇
  2024年   14篇
  2023年   282篇
  2022年   414篇
  2021年   524篇
  2020年   443篇
  2019年   399篇
  2018年   384篇
  2017年   418篇
  2016年   562篇
  2015年   527篇
  2014年   884篇
  2013年   865篇
  2012年   757篇
  2011年   1728篇
  2010年   1207篇
  2009年   1018篇
  2008年   877篇
  2007年   910篇
  2006年   658篇
  2005年   448篇
  2004年   352篇
  2003年   333篇
  2002年   255篇
  2001年   202篇
  2000年   182篇
  1999年   173篇
  1998年   182篇
  1997年   131篇
  1996年   148篇
  1995年   118篇
  1994年   112篇
  1993年   88篇
  1992年   71篇
  1991年   59篇
  1990年   54篇
  1989年   46篇
  1988年   38篇
  1987年   34篇
  1986年   24篇
  1985年   66篇
  1984年   52篇
  1983年   42篇
  1982年   52篇
  1981年   14篇
  1980年   20篇
  1979年   6篇
  1978年   6篇
  1976年   2篇
  1973年   2篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Na0.5+δBi0.5(Ti0.96W0.01Ni0.03)O3 thin films with various Na contents (abbreviated as Na.5+δBTWN, δ?=?? 3.0, ??1.5, 0, 1.5%) were fabricated on ITO/glass substrates using a chemical–solution process. The effects of Na nonstoichiometry on the microstructure, insulating, ferroelectric and dielectric performances are investigated. The pure perovskite phase can be obtained in Na0.5BTWN and Na0.515BTWN, while for Na0.470BTWN or Na0.485BTWN, the main composition contains secondary phase of TiO2. The grain size increases from 30?nm at δ?=?? 3.0% to 55?nm at δ?=?0%, then decreases to 52?nm with δ?=?1.5%. The leakage current of Na0.485BTWN sample is reduced dramatically in comparison with Na0.5+δBTWN (δ?=?? 3.0, 0, 1.5%). The big recoverable energy–storage density of 63.1?J/cm2 and high energy–storage efficiency of 55.0% can be obtained for Na0.485BTWN due to the improved electric break–down strength and large difference value between the remanent polarization and maximum polarization. Enhanced dielectricity is achieved in Na0.485BTWN with a high tunability of 36.0% and a figure of merit of 4.0 at 450?kV/cm and 500?kHz. These results demonstrated that the crystallization, micrographs and energy storage and dielectric properties of Na0.5Bi0.5TiO3 are highly sensitive to low levels of Na–site nonstoichiometry.  相似文献   
72.
Development of cost efficient, flexible and light weight paper electrodes for high-tech applications is high in demand in era of modern disposable technology. In this study α-MnO2 nanorods were fabricated through hydrothermal method by varying growth time and further combined with lignocelluloses fibers extracted from self growing plant, Monochoria Vaginalis. Crystal structure, morphology and thermal properties of MnO2 nanorods were characterized by X. Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Thermogravimetric Analysis (TGA), respectively. FESEM image analysis revealed the highest aspect ratio of 48.016 for 4?h treated MnO2 sample and high purity level was confirmed by XRD. MnO2 sample with high aspect ratio, relatively pure and larger yield was selected for incorporation of lignocelluloses fibers to fabricate flexible, light-weight and environmentally safe LC/MnO2 composite paper sheet. Furthermore, LC/MnO2 composite sheet was employed as working electrode in 2?M sodium sulfate electrolyte for cyclic voltammetry measurements. Presented LC/MnO2 composite sheet revealed specific capacitances 117, 59, 39, 25 and 23?F/g at scan rates of 5, 10, 20, 50 and 100?mV/s, respectively. Incorporation of LC fibers within MnO2 nanorods as binders will open the possibilities to fabricate the flexible paper electrode for application in supercapacitors and batteries due to facile synthesis, light-weight and environmentally friendly aspects.  相似文献   
73.
In this work, Na0.5(Bi1-xDyx)0.5TiO3 (0?≤?x?≤?15%) ceramics were prepared via solid state reaction method and were characterized. A stable and pure perovskite phase was revealed by X-ray diffraction analysis for all compositions and a symmetry change from rhombohedral to orthorhombic phase was detected beyond 10% of Dy substitution. The incorporation of Dy3+ into Sodium Bismuth Titanate (Na0.5Bi0.5TiO3) matrix allows a substantial decrease of the coercive field, an increase in the resistivity, and leads to a high stability of the dielectric permittivity (??/?(150?°C) ≤?±?15%) over a wide temperature range. Furthermore, this system was found to exhibit improved energy storage properties at high temperatures with a maximum energy density of 1.2?J/cm3 obtained for 2%Dy composition at 200?°C. The obtained results are very promising for energy storage capacitors operating at high temperatures.  相似文献   
74.
High-efficient Ce3+/Tb3+ co-doped Ba3Y2B6O15 phosphors with multi color-emitting were firstly prepared, and their structural and luminescent properties were studied by XRD Rietveld refinement, emission/excitation spectra, fluorescence lifetimes as well as temperature-variable emission spectra. Upon 365?nm excitation, the characteristic blue Ce3+ band along with green Tb3+ peaks were simultaneously found in the emission spectra. Moreover, by increasing concentration of Tb3+, a blue-to-green tunable emitting color could be realized by effective Ce3+→Tb3+ energy transfer. Furthermore, all Ba3Y2B6O15: Ce3+, Tb3+ phosphors exhibit high internal quantum efficiency of ~?90%, while the temperature-variable emission spectra reveal that the phosphors possess impressive color stability as well as good thermal stability (T50 =?~?120?°C). The results indicate that these efficient color-tuning Ba3Y2B6O15: Ce3+, Tb3+ might be candidate as converted phosphor for UV-excited light-emitting diodes.  相似文献   
75.
Upconversion Sr2(Gd.98-xEr.02Ybx)8Si6O26 (SGSO:2Er3+/xYb3+) phosphor materials were synthesized using a citrate sol-gel process. X-ray diffraction patterns confirmed their hexagonal structure. Field emission scanning electron microscopy images of SGSO:2Er3+/xYb3+ phosphors depicted submicron particles. The enhanced upconversion luminescence properties of SGSO:2Er3+/xYb3+ phosphors were analysed as a function of Yb3+ ion concentration and laser power. The energy transfer induced enhanced emission of the Er3+/ Yb3+ ions co-doped SGSO phosphors was ascribed to multi-phonon relaxation. The calculated chromaticity coordinates of the SGSO:2Er3+/xYb3+ phosphors showed emissions could be tuned by changing Yb3+ ion concentration. Optimized sample exhibited the chromaticity coordinate values near to the ultra-high definition television standard green emission coordinates.  相似文献   
76.
This work reports the characteristics of nonstoichiometric Na0.5+xBi0.5+yTi0.96W0.01Ni0.03O3 (x?=?0.0%, y?=?1.0%; x?=?0.5%, y?=?2.0%; x?=?1.0%, y?=?4.0%) ceramic films derived from chemical solution deposition and the role played by excess Na/Bi in modifying microstructure and electrical properties. Single perovskite phase structure can be maintained in all compositions. Decreased grain size can be obtained with the increasing compensation for volatile Na/Bi elements. Particularly, extra amounts of 0.5?mol% Na and 2.0?mol% Bi leads to reduced leakage and enhanced ferroelectric polarization. Meanwhile, due to the high breakdown electrical field strength and large difference between maximum and remanent polarization, an excellent energy storage performance can be achieved in Na0.505Bi0.52Ti0.96W0.01Ni0.03O3 sample, which is distinguished by a recoverable energy storage density of 40.5?J/cm3 and an energy storage efficiency of 43.6% at 2515?kV/cm as well as a good frequency stability. Hence, the regulation for the content of volatile elements is effective to modify the electrical response of Na0.5Bi0.5TiO3-based materials.  相似文献   
77.
Thermo-chemical energy storage based on metal hydrides has gained tremendous interest in solar heat storage applications such as concentrated solar power systems (CSP) and parabolic troughs. In such systems, two metal hydride beds are connected and operating in an alternative way as energy storage or hydrogen storage. However, the selection of metal hydrides is essential for a smooth operation of these CSP systems in terms of energy storage efficiency and density. In this study, thermal energy storage systems using metal hydrides are modeled and analyzed in detail using first law of thermodynamics. For these purpose, four conventional metal hydrides are selected namely LaNi5, Mg, Mg2Ni and Mg2FeH6. The comparison of performance is made in terms of volumetric energy storage and energy storage efficiency. The effects of operating conditions (temperature, hydrogen pressure and heat transfer fluid mass flow rates) and reactor design on the aforementioned performance metrics are studied and discussed in detail. The preliminary results showed that Mg-based hydrides store energy ranging from 1.3 to 2.4 GJ m?3 while the energy storage can be as low as 30% due to their slow intrinsic kinetics. On the other hand, coupling Mg-based hydrides with LaNi5 allow us to recover heat at a useful temperature above 330 K with low energy density ca.500 MJ m?3 provided suitable operating conditions are selected. The results of this study will be helpful to screen out all potentially viable hydrides materials for heat storage applications.  相似文献   
78.
The electrocaloric effect and energy storage property are tuned in the Ba1-xCexTi0.99Mn0.01O3 ceramics prepared by the solid state reaction method. The ceramics with lower Ce content (x?=?0.005, 0.015) show a better ΔT and ΔT/ΔE response. The ceramics with higher Ce content (x?=?0.030, 0.040, 0.045) represent the broader ΔT peaks (50?K–60?K), and the higher energy storage density and efficiency. The largest electrocaloric response (ΔTmax?=?1.22?K, ΔT/ΔE?=?0.41?K mm/kV) is found in the Ba0.995Ce0.005Ti0.99Mn0.01O3 ceramics, which is comparable or even higher than that of the most isovalent substituting BaTiO3-based ceramics reported before. The maximum energy storage density 0.11?J/cm3 (E?=?30?kV/cm) is obtained for the Ba0.970Ce0.030Ti0.99Mn0.01O3 ceramics, with high efficiency of 65–88% over a wide temperature range of 72?K. This work may open more opportunities to design high electrocalaric and energy storage performance lead-free systems from the viewpoint of the heterovalent and size mismatch substitution.  相似文献   
79.
Lead-free 0.9BaTiO3-0.1(Bi0.9Na0.1)(In0.8Zr0.2)O3 (0.9BT-0.1BNIZ) ferroelectric relaxor ceramic was synthesized by solid-state reaction method. A dense microstructure and fine grain size was obtained with addition of BNIZ content. The dielectric behaviors indicated the dominance of ergodic relaxor phase. The 0.9BT-0.1BNIZ ceramic was found to possess an enhanced recoverable energy density (WR~1.33?J/cm3) and efficiency (η~88%) under 18?kV/mm at room temperature. What’s more, WR is maintained ≥0.53?J/cm3 with η?≥?94% under 10?kV/mm and the variation of WR is less than 15% over 25~140?°C. The high stability of energy storage properties is mainly ascribed to the characteristics of ergodic relaxor phase. The stored energy was released in sub-microseconds (~0.19?μs). The superior current density (CD~796?A/cm2) and the power density (PD~39.8?MW/cm3) were obtained simultaneously. The enhanced WR and the superior charge-discharge performances strongly demonstrate that the BT-based ceramics are promising candidates of high-power pulse capacitor applications.  相似文献   
80.
In this work, the relationship between the structural mechanisms and macroscopic electrical properties of the Nb-modified 0.96(Bi0.5Na0.84K0.16TiO3)–0.04SrTiO3 (BNKT–ST) system were elucidated by using temperature dependent and in situ synchrotron X-ray diffraction (XRD) techniques. For the composition x?=?0.0175, a large-signal piezoelectric coefficient (Smax/Emax?=?d33*) of 735 pm?V?1 at 6?kV mm?1 was observed at room temperature. Interestingly, at a higher temperature of 110?°C, the sample still showed a large d33* of 570 pm V?1. Furthermore, the temperature-invariant electrostrictive coefficient for this sample was found to be 0.0285?m4?C?2 over the temperature range of 25–170?°C. Moreover, the energy density for x?=?0.030 sample was ~1.0?J?cm?3 with an energy storage efficiency of ?70% in the temperature range of 25–135?°C. These results suggest that the synthesized Nb-modified BNKT–ST system is promising for the design of ceramic actuators as well as capacitor applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号