首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   0篇
  国内免费   2篇
电工技术   3篇
化学工业   62篇
金属工艺   11篇
石油天然气   1篇
无线电   2篇
一般工业技术   38篇
冶金工业   1篇
  2023年   6篇
  2022年   5篇
  2021年   7篇
  2020年   7篇
  2019年   8篇
  2018年   11篇
  2017年   7篇
  2016年   6篇
  2015年   5篇
  2014年   8篇
  2013年   2篇
  2012年   12篇
  2011年   11篇
  2010年   13篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
71.
《Ceramics International》2019,45(10):12716-12726
The Fe-doped PZT, Pb (Zr, Ti)1-xFexO3, ceramics have gathered plenty of attention because of the interplay of ferroelectric and ferromagnetic properties. In the present study, we report the properties of Pb(Zr0.52Ti0.48)1-xFexO3 prepared by conventional solid-state reaction route with varying Fe3+ doping concentrations, x = 0, 0.05, 0.10, 0.15 and 0.20. Study of X-ray diffraction patterns confirmed the tetragonal crystal structure along with reduction in tetragonality and unit-cell size with doping. It also showed formation of secondary magneto-plumbite phase at higher doping concentrations. The SEM micrographs exhibited decrease in grain size with increase in doping concentration (for x > 0.05). The increase in oxygen vacancies and the formation of secondary magneto-plumbite phase and Fe3+–VO2−–Fe3+ defect dipole complexes introduced with the acceptor (Fe3+) doping, caused clamping of the domain walls and hence reduced the room temperature dielectric constant as the doping concentration was increased. The coexistence of electrical polarization and magnetic moment at room temperature in all PFZT compositions confirmed the multiferroic characteristic in the ceramic samples. Electric polarization (Pr) and coercive fields (Ec) decreased with increase in Fe3+ concentration in PFZT sample. However, magnetization (M) and magnetic coercive fields (Ec) increased with the increasing Fe3+ concentration due to the dominant effect of F-center exchange mechanism in Fe3+–VO2−–Fe3+ and formation of ferromagnetic secondary magneto-plumbite phase.  相似文献   
72.
High density Ba4Sm2Fe2Nb8O30 (BSFN) multiferroics ceramics with tetragonal tungsten bronze structure had been prepared by microwave sintering (MS) for 30min and conventional sintering (CS) methods for 4 h at 1275 °C. Single tungsten bronze phase and equiaxial grains are obtained for the MS BSFN ceramics, while a small amount secondary phase of SmNbO4 is observed in the CS BSFN ceramics with columnar grains. Compared to Ba4Sm2Fe2Nb8O30 ceramics prepared by CS method, enhanced dielectric, ferroelectric and magnetic properties are achieved for the MS BSFN ceramics. The values of electric polarization Pr and coercive electric field Ec are 2.11 μC/cm2 and 7.14 kV/cm for the MS BSFN ceramics, respectively. Meantime, the magnetic polarization Mr of 0.410emu/g and coercive magnetic field Hc of 2930Oe are also obtained for the MS BSFN ceramics. Based on the density, crystal structure, point defect and grain, the reasons of enhanced dielectric, ferroelectric and magnetic properties are discussed for the MS BSFN ceramics It is indicated that Ba4Sm2Fe2Nb8O30 is an intrinsic room temperature multiferroic materials.  相似文献   
73.
Among the different types of multiferroic compounds, bismuth ferrite (BiFeO3; BFO) stands out because it is perhaps the only one being simultaneously magnetic and strongly ferroelectric at room temperature. Therefore, in the past decade or more, extensive research has been devoted to BFO-based materials in a variety of different forms, including ceramic bulks, thin films and nanostructures. Ceramic bulk BFO and their solid solutions with other oxide perovskite compounds show excellent ferroelectric and piezoelectric properties and are thus promising candidates for lead-free ferroelectric and piezoelectric devices. BFO thin films, on the other hand, exhibit versatile structures and many intriguing properties, particularly the robust ferroelectricity, the inherent magnetoelectric coupling, and the emerging photovoltaic effects. BFO-based nanostructures are of great interest owing to their size effect-induced structural modification and enhancement in various functional behaviors, such as magnetic and photocatalytic properties. Although to date several review papers on BFO and BFO-based materials have been published, they were each largely focused on one particular form of BFO. There have been very few papers addressing the different forms of BFO in a comprehensive manner and providing a comparison across the different forms. As BFO has been extensively studied over the past more than one decade especially in the past several years, there have been new phenomena arising more recently. Naturally they were not included in the early reviews. Here, we provide an updated comprehensive review on the progress of BFO-based materials made in the past fifteen years in the different forms of ceramic bulks, thin films and nanostructures, focusing on the pathways to modify different structures and to achieve enhanced physical properties and new functional behavior. We also prospect the future potential development for BFO-based materials in the cross disciplines and for multifunctional applications. We hope that this comprehensive review will serve as a timely updating and reference for researchers who are interested in further exploring bismuth ferrite-based materials.  相似文献   
74.
《Ceramics International》2022,48(17):24439-24453
Lead-free multiferroic 3–0 type particulate composites with a composition (1?x)(Ba0.85Ca0.15Zr0.1Ti0.9O3) – x(Ni0.7Zn0.3Fe2O4) [(1?x)BCZT – xNZFO with 0 ≤ x ≤ 100 at%] were prepared using solid state reaction method. Structural and microstructural analysis using XRD, FESEM and Raman techniques confirmed the phase formation of the ferroelectric (BCZT) and magnetostrictive (NZFO) phases without any detectable presence of impurity phases. Rietveld refinement of the XRD data revealed a tetragonal (P4mm) and a cubic structure (Fd3m) for the BCZT and NZFO phases, respectively. Elemental compositions of the constituent phases were assessed by EDS and XPS analyses. Electrical, magnetic, and magnetoelectric (ME) measurements were performed. The composites exhibit typical well-saturated magnetic hysteresis (M?H) loops at room temperature, having very low coercive field (HC) values, indicating their soft ferromagnetic behavior. Various parameters extracted from the M?H curves including HC, magneto-crystalline anisotropy, squareness, and magnetization were found to depend on x. Frequency dependence of capacitance and admittance exhibited a resonance behavior corresponding to the radial mode of the electromechanical resonance (EMR). ME coefficients were studied in both longitudinal (αE33) and transverse (αE31) modes. The highest coupling coefficients, αE31 ~14.5 mV/Oe.cm and αE33 ~13 mV/Oe.cm were obtained for composite with 50 at% NZF at off-resonance frequency of 1 kHz. At the EMR frequency of 314 kHz, the αE31 value in 0.5BCZT-0.5NZFO composite enhanced enormously to ~5.5 V/Oe.cm. The studies conclude that x = 0.5 is an optimum atomic fraction of NZFO in the particulate composite for maximum ME coupling.  相似文献   
75.
Bismuth ferrite (BiFeO3) is a unique magnetoelectric multiferroic that exhibits the coexistence of ferroelectricity and antiferromagnetism at room temperature. This unique combination of properties has pumped a huge surge in current research on BiFeO3 as a future material for very important technological applications such as magnetic detectors and as an active layer in magnetoelectric memories. For such applications involving miniaturized components and devices, it is essentially important to have an idea of the mechanical integrity of the system at the scale of the microstructure. In spite of the wealth of the literature, however, the attempt to evaluate the mechanical integrity of nano BiFeO3 at a scale comparable with the local microstructural length scale was almost non-existent. Here we report, possibly for the first time the nanoindentation behaviour of a sol-gel process derived nano BiFeO3 having particle size of 5-25 nm. The nanoindentation studies were conducted at 100-1000 μN loads on a green pellet annealed at a low temperature of only 300 °C to avoid particle coarsening. The results showed interesting dependence of nanohardness and Young's modulus on the nanoindentation load which could be explained in terms of elastic recovery and plastic deformation energy concepts.  相似文献   
76.
BiFe1−xCrxO3 (x = 0, 0.04, 0.06 and 0.08) nanoceramics were prepared by sol-gel method. Nanoceramics were calcined at 450 °C. Calcined powders were leached in diluted nitric acid to get single phase. TEM analysis shows the particle size to be ∼80 nm. Thermogravimetric analysis of as prepared powder indicates that the single phase is formed at around 450 °C. Magnetization was found to increase as the concentration of Cr was increased. Dielectric constant and dielectric loss were found to decrease with increase in frequency for all the compositions. Magnetocapacitance was found to increase with magnetic field. For BiFe1−xCrxO3 (x = 0.04, 0.06 and 0.08) nanoceramics, the change of dielectric constant induced by magnetic field may be well approximated by Δ?/? = γM2, here, γ (magnetoelectric interaction) is small and positive. A linear fit gave the value of γ of ∼18.4 × 10−2, 12.3 × 10−2 and 3.3 × 10−2 for BiFe1−xCrxO3 (x = 0.04, 0.06 and 0.08) nanoceramics, respectively.  相似文献   
77.
BiFeO3/[0.93(Bi0.50Na0.50TiO3)-0.05BaTiO3-0.02K0.50Na0.50NbO3] (BFO/BNBTKNN) bilayered thin films were fabricated on Pt/TiO2/SiO2/Si substrates without any buffer layers by a combined sol-gel and radio frequency sputtering route. Effect of BNBTKNN on electrical properties of BFO/BNBTKNN thin films was investigated. A higher phase purity and a denser microstructure are induced for the BFO/BNBTKNN bilayered thin film by using the bottom BNBTKNN layer, resulting in its lower leakage current density. Moreover, the enhancement in dielectric behavior is also demonstrated for such a bilayer, where a high dielectric constant and a low dielectric loss are obtained. The BFO/BNBTKNN bilayered thin film has an improved multiferroic behavior: 2Pr ∼ 76.8 μC/cm2, 2Ec ∼ 378.1 kV/cm, 2Ms ∼ 52.6 emu/cm3, and 2Hc ∼ 453.6 Oe, together with a low fatigue rate up to ∼1 × 109 switching cycles.  相似文献   
78.
The well-saturated ferroelectric hysteresis loops with double remnant polarization up to 50?μC/cm2 were obtained in four layered Aurivillius-type multiferroic Bi5FeTi3O15 thin film. Pulsed positive-up negative-down polarization measurements demonstrate the intrinsic ferroelectric polarization, which present optimal rectangularity and polarization value. The hysteresis loops measurements with larger frequency range of 0.2–100?kHz indicate stable and ultra-fast switching speed of ferroelectric domains. Persistent retention properties were observed, and they are also independent of the applied electric field. In fatigue test an increased dielectric constant is observed along with the suppression of switchable polarization. Both of them can be restored partly to their original values via the stimulating of high electric field. The block domain switching due to the oxygen vacancies aggregated on domain walls are discussed for those characteristics. It is providing important contributions of domain wall pinning in the polarization degradation of Aurivillius-type ferroelectric films with four layers.  相似文献   
79.
Designing multicaloric single-phase materials with combined electro- and magnetocaloric effects is still at its initial stage and presents a number of challenges. One of the main challenges encountered so far is to reduce the excessive electrical conductivity, which leads to the appearance of Joule heating that might completely degrade the electrocaloric response. In this work, multicaloric Pb(Fe0.5Nb0.5)O3 material was successfully prepared exhibiting pronounced electrocaloric effect above room temperature and maximum magnetocaloric effect at cryogenic temperature. The conductivity was suppressed by controlling the sintering temperature. The ceramic sintered at 1000 °C exhibits maximum electrocaloric effective cooling of 0.88 °C at 28 °C and maximum magnetocaloric effect of 0.14 °C at ?271 °C. The caloric properties can be further improved by doping Pb(Fe0.5Nb0.5)O3 with manganese. In comparison to the undoped sample, Pb(Fe0.5Nb0.5)O3 doped with 0.5 mol% of manganese exhibits three times higher maxima of electrocaloric effective cooling (2.47 °C at 80 °C) and magnetocaloric temperature change (0.44 °C at ?271 °C).  相似文献   
80.
MTiO3 (M = Fe, Mn, Ni) compounds have received recent attention as possible candidates for multiferroic materials capable of magnetization switching by application of an electric field. In an attempt to stabilize NiTiO3 in the rhombohedral R3 structure, epitaxial Ni1 − xTi1 − yO3 films of different thickness and composition were deposited on Al2O3(0001) by pulsed laser deposition, and characterized using several techniques. Structural parameters for ilmenite-type NiTiO3 and the metastable LiNbO3-type NiTiO3 structure with the space group R3c were predicted using density functional theory calculations, and compared with the experimental results. Our structural data from X-ray diffraction and X-ray absorption spectroscopy indicate that epitaxial ilmenite-type NiTiO3 films were grown. Furthermore, lattice strain exerted by the sapphire substrate results in a distorted ilmenite structure similar to the LiNbO3-type one. While R3c NiTiO3, the desired structure based on recent theory, cannot be claimed at this point, our results demonstrate the potential of oxide heteroepitaxy to stabilize metastable multiferroic phases that may be difficult to prepare or are inaccessible in the bulk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号