首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   553篇
  免费   47篇
  国内免费   18篇
电工技术   5篇
综合类   20篇
化学工业   281篇
建筑科学   3篇
矿业工程   2篇
能源动力   95篇
轻工业   7篇
石油天然气   144篇
一般工业技术   10篇
冶金工业   3篇
原子能技术   4篇
自动化技术   44篇
  2023年   10篇
  2022年   18篇
  2021年   27篇
  2020年   27篇
  2019年   26篇
  2018年   19篇
  2017年   25篇
  2016年   24篇
  2015年   43篇
  2014年   68篇
  2013年   68篇
  2012年   54篇
  2011年   64篇
  2010年   34篇
  2009年   26篇
  2008年   14篇
  2007年   16篇
  2006年   19篇
  2005年   11篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有618条查询结果,搜索用时 343 毫秒
81.
张彩珠  王春燕  陈珊  魏顺安 《化工进展》2013,32(6):1278-1282
燃煤发电是我国的主要电力方式,分析燃煤电厂的能量利用情况对节能减排有重要作用。本文以国际典型亚临界燃煤电厂和我国西南地区某亚临界燃煤电厂为计算实例,结合Aspen Plus软件和有效能分析法,对其整个热力过程进行系统模拟计算和能量分析,得出每个设备的有效能损失。结果表明,热力过程中有效能损失最大的部位在锅炉;锅炉中有效能损失最大的是煤的燃烧过程,其次为锅炉受热面的换热过程。通过对国内外两个电厂的比较,发现国内亚临界燃煤电厂有效能效率较国外低约6个百分点。  相似文献   
82.
甲醇精馏热焓控制设计及Aspen实现   总被引:1,自引:1,他引:0       下载免费PDF全文
孙自强  曹海林 《化工学报》2012,63(9):2716-2720
对甲醇精馏塔塔釜进行热焓控制方案设计并通过Aspen软件仿真验证。首先介绍了甲醇三塔精馏工艺背景,根据实际项目的工艺条件,精馏塔底部采用双换热器作为再沸器的特点,进行热焓控制方案的设计,然后,利用Aspen软件仿真,以出料杂质乙二醚的含量为参考标准,通过与甲醇精馏塔塔釜常规温度控制的对比验证了本控制方案中热焓控制的优势,在面对实际工况下常规的流量和组分变化扰动时,产品质量能达到工业生产的要求,具有一定的实际意义。  相似文献   
83.
本工作对低温精馏分离13C同位素的稳态模拟与动态模拟进行了研究。使用商用流程模拟软件Aspen Plus建立低温精馏过程的稳态模型,通过对比模拟数据与实验数据,验证物性参数和模型的可靠性。使用Aspen Dynamics建立低温精馏过程的动态模型,动态模拟结果与实验数据吻合良好。结果表明,可以使用Aspen Dynamics对碳同位素分离过程进行动态特性研究,并对精馏过程进行开车时间预测、控制方案分析、操作性分析和安全性分析等。  相似文献   
84.
A hydrogen supply system of 70 MPa hydrogen storage cylinder on vehicles is designed, in which a compressor is proposed to use the new type of ion compressor. The system is simulated statically by Aspen Plus. Meanwhile, during the process of hydrogen charged from the third-stage high-pressure hydrogen storage tank to the hydrogen storage cylinder on vehicles, the dynamic variety of the third-stage high-pressure hydrogen storage tank is simulated dynamically by Aspen HYSYS Through the simulation, obtaining the results that there are difference between theoretical calculation and simulation for the volume of third-stage high-pressure hydrogen storage tank and the average volume flow of hydrogen in a third-stage high-pressure hydrogen storage tank varies with its pressure and volume. By comparing the results of Aspen Plus simulation and Aspen HYSYS simulation, there are some differences. The designed system can be applied to hydrogen stations and any operating conditions involving the supply hydrogen.  相似文献   
85.
Aspen Plus平台上构建生物质移动床热解多联产系统模型,通过对秸秆热解过程的模拟,研究了生物炭、生物油和生物燃气三态热解产物特性,以及热解温度对系统燃料投入、水耗和电耗的影响。结果表明,随热解温度升高,生物炭热值逐渐增大。生物油和生物燃气的产率分别在450℃和650℃附近达到最大值。当热解温度为450℃时,生物油重质组分主要由糖衍生类和脂肪酸类物质构成,而轻质组分主要包括醛类、醇类和水;当热解温度为650℃时,生物燃气则主要由CO2和CO构成。生产过程中,系统的燃料消耗和电耗均随着热解温度的升高而增大,冷却水消耗量则经历先减少后增加的过程,并在450℃附近达到最小值。  相似文献   
86.
In this paper, the mixture of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate was separated by middle-vessel batch distillation with feeding in middle-vessel and process control characteristics were researched. The steady state simulation results in Aspen Plus were exported to Aspen Dynamics. Then control effect of liquid level control with HighSelector, composition control (structure1, structure2) and temperature control (proportional action, proportional integration action) were proposed. Composition control structure 2 and temperature control with PI action were investigated to achieve a good control effect.  相似文献   
87.
为使得整个机械蒸汽再压缩(MVR)蒸发系统的稳定性、节能性更好,借助Aspen Plus软件学习版,根据MVR运行原理,构建了MVR性能分析模型,并通过改变MVR节点的参数,模拟研究了蒸发量、补充新鲜蒸汽量与进料温度、蒸发压强的关系;蒸发量、沸点与进料浓度(NaCl质量分数)、蒸发压强的关系;蒸发器换热量、COP与蒸发压强、压缩机压力升的关系。通过分析模拟结果得出:适当减小压缩比,可以提高蒸发系统的COP;原料液应该加热到沸点后,再进入蒸发器中进行换热;从节能效果看,MVR蒸发系统更适合在低温低压下运行;在蒸发前,应对浓度较大的原料液进行适当的稀释。  相似文献   
88.
东赫  刘金昌  解强  党钾涛  王新 《化工进展》2016,35(8):2426-2431
利用Aspen Plus、基于热力学平衡模型对GSP煤粉气化炉、GE水煤浆气化炉及四喷嘴对置式水煤浆气化炉的气化过程建模。根据煤颗粒热转化的历程,将煤气化过程划分为热解、挥发分燃烧、半焦裂解及气化反应4个阶段,利用David Merrick模型计算热解过程,采用Beath模型校正压力对热解过程的影响,选用化学计量反应器模拟挥发分燃烧反应,编制Fortran程序计算半焦裂解产物收率,最后基于Gibbs自由能最小化方法计算气化反应。结果表明,采用建立的气流床气化过程模型模拟工业气化过程的结果与生产数据基本吻合,对GSP煤粉气化炉、GE水煤浆气化炉及四喷嘴对置式水煤浆气化炉等3种气化炉有效气成分(CO+H2)体积分数模拟结果的误差均不超过2%,建立模型的可靠性得到验证。  相似文献   
89.
以低温煤焦油碱洗提取的粗酚为对象,设计了4塔连续精馏工艺,并利用Aspen Plus软件对精馏过程进行初步模拟计算。通过简化组分、选择合适物性方法、DSTWU模型估算参数、RADFRAC模型严格计算,得到了连续精馏的工艺参数。在进料量为100 kmol/h,冷凝器10 kPa,再沸器30 kPa的压力下,4塔的塔板数分别为50、32、55、50,回流比分别为14.24、10.99、10.04、15.44,塔顶馏出量分别为15.168、16.795、31.059、17.577 kmol/h,得到塔顶产品质量纯度分别为苯酚95%(回收率95.0%)、邻甲酚95%(回收率94.1%)、间甲酚83%(回收率93.2%)、2,4-二甲酚74%(回收率97.8%)。得到的精馏工艺参数可以为粗酚精馏的实验和设计提供参考。  相似文献   
90.
The in-situ removal of CO2 and the increase of the energetic gas yield, including hydrogen and methane, by sorption enhanced steam hydrogasification (SE-SHR) process were investigated. Lignite was used in this study as the feedstock to the steam hydrogasification reaction (SHR) with the addition of calcined dolomite as a sorbent. CO2 was reduced dramatically with the introduction of the sorbent into the reactor. The production of hydrogen and methane was increased simultaneously. The hydrogen yield was increased by 60% when the calcium oxide to carbon molar ratio was increased to 0.86 as compared to the results without the sorbent. The hydrogen in the product gas was sufficient to maintain a self-sustained supply back to the SHR when the calcium oxide to carbon molar ratio was over 0.29. The performance of the SE-SHR was determined at different temperatures ranging from 650 °C to 800 °C and at different steam to carbon molar ratios. Additionally, the char conversion was also enhanced in all cases with the sorbent introduction. The synthesis gas production using SE-SHR coupled with steam methane reforming was also modeled by Aspen Plus. The simulation results showed that the H2/CO ratio of the synthesis gas generated based on SE-SHR process was 6 with higher overall energy efficiency of 74.5%. Summarily, the main findings of this study were that the overall performance of the SE-SHR was substantially improved compared to the conventional operation of the SHR and the quality of synthesis gas produced based on SE-SHR process was more flexible for the downstream processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号