首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2394篇
  免费   35篇
  国内免费   11篇
电工技术   9篇
综合类   17篇
化学工业   644篇
金属工艺   9篇
机械仪表   7篇
建筑科学   84篇
矿业工程   6篇
能源动力   1400篇
轻工业   54篇
水利工程   15篇
石油天然气   8篇
无线电   2篇
一般工业技术   45篇
冶金工业   36篇
原子能技术   5篇
自动化技术   99篇
  2024年   1篇
  2023年   32篇
  2022年   73篇
  2021年   76篇
  2020年   104篇
  2019年   117篇
  2018年   88篇
  2017年   49篇
  2016年   156篇
  2015年   115篇
  2014年   130篇
  2013年   143篇
  2012年   74篇
  2011年   323篇
  2010年   180篇
  2009年   173篇
  2008年   127篇
  2007年   113篇
  2006年   74篇
  2005年   55篇
  2004年   44篇
  2003年   44篇
  2002年   30篇
  2001年   12篇
  2000年   19篇
  1999年   13篇
  1998年   16篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   14篇
  1993年   2篇
  1992年   12篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
排序方式: 共有2440条查询结果,搜索用时 265 毫秒
81.
Empty fruit bunch (EFB) from oil palm is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. Confirming the assertion, this paper presents an overview of EFB as a feedstock for bio-oil production. The fundamental characteristics of EFB in terms of proximate analysis, ultimate analysis and chemical composition, as well as the recent advances in EFB conversion processes for bio-oil production like pyrolysis and solvolysis are outlined and discussed. A comparison of properties in terms of proximate analysis, ultimate analysis and fuel properties between the bio-oil from EFB and petroleum fuel oil is included. The major challenges and future prospects towards the utilization of EFB as a useful resource for bio-oil production are also addressed.  相似文献   
82.
The organic fraction of municipal solid waste (OFMSW), normally exceeding 60% of the waste stream in developing countries, could constitute a valuable source of feed for microbial fuel cells (MFCs). This study tested the start-up of two sets of OFMSW-fed air-cathode MFCs inoculated with wastewater sludge or cattle manure. The maximum power density obtained was 123 ± 41 mW m−2 in the manure-seeded MFCs and 116 ± 29 mW m−2 in the wastewater-seeded MFCs. Coulombic efficiencies ranged between 24 ± 5% (manure-seeded MFCs) and 23 ± 2% (wastewater-seeded MFCs). Chemical oxygen demand removal was >86% in all the MFCs and carbohydrate removal >98%. Microbial community analysis using 16S rRNA gene pyrosequencing demonstrated the dominance of the phylum Firmicutes (67%) on the anode suggesting the possible role of members of this phylum in electricity generation. Principal coordinate analysis showed that the microbial community structure in replicate MFCs converged regardless of the inoculum source. This study demonstrates efficient electricity production coupled with organic treatment in OFMSW-fueled MFCs inoculated with manure or wastewater.  相似文献   
83.
Dry torrefaction and hydrothermal carbonization (HTC) are two thermal pretreatment processes for making homogenized, carbon rich, hydrophobic, and energy dense solid fuel from lignocellulosic biomass. Pellets made from torrefied biochar have poor durability compared to pellets of raw biomass. Durability, mass density, and energy density of torrefied biochar pellets decrease with increasing dry torrefaction temperature. Durable pellets of torrefied biochar may be engineered for high durability using HTC biochar as a binder. In this study, biomass dry torrefied for 1 h at 250, 275, 300, and 350 °C was pelletized with various proportions of biomass HTC treated at 260 °C for 5 min. During the pelletization of biochar blends, HTC biochar fills the void spaces and makes solid bridges between torrefied biochar particles, thus increasing the durability of the blended pellets. The engineered pellets' durability is increased with increasing HTC biochar fraction. For instance, engineered pellets of 90% Dry 300 and 10% HTC 260 are 82.5% durable, which is 33% more durable than 100% Dry 300 biochar pellets, and also have 7% higher energy density than 100% Dry 300 biochar pellets.  相似文献   
84.
Slow pyrolysis of giant mullein (Verbascum thapsus L.) stalks have been carried out in a fixed-bed tubular reactor with (Al2O3, ZnO) and without catalyst at four different temperatures between 400 to 550°C with a constant heating rate of 50°C/min and with a constant sweeping gas (N2) flow rate of 100 cm3/min. The amounts of bio-char, bio-oil, and gas produced were calculated and the compositions of the obtained bio-oils were determined by gas chromatography-mass spectrometry. The effects of pyrolysis parameters, such as temperature and catalyst, on the product yields were investigated. The results show that both temperature and catalyst have significant effects on the conversion of Verbascum thapsus L. into solid, liquid, and gaseous products. The highest liquid yield of 40.43% by weight including the aqeous phase was obtained with 10% zinc oxide catalyst at 500°C temperature. Sixty-seven different products were identified by gas chromatography-mass spectrometry in the bio-oils obtained at 500°C temperature.  相似文献   
85.
Agriculture generates large amount of by-products that could be used to produce energy and reduce the amount of fuelwood required to meet the daily cooking needs, especially in developing countries. Rice is a major crop grown in West Africa and rice husk is a by-product of the milling process. The goal of this study was to develop a low cost system to produce biomass briquettes from rice husks in the context of a rural village. A manual press generating a pressure of 4.2 MPa was developed and used. The influence of the briquette formulation (type of binder, binder content, water addition, and bran content) was studied. The binders investigated were cassava wastewater, rice dust, and okra stem gum. The physical properties (density, moisture content, calorific value, durability, and compressive strength) were tested to identify the briquettes with the highest quality, i.e. greatest physical integrity. The briquettes made with rice dust had the highest durability (91.9%) and compressive strength (2.54 kN), while the briquettes made with cassava starch wastewater had the greatest density (441.18 kg m−3). Water added to the rice husk before densification positively influenced the briquette quality while bran seemed to mostly increase the density, but not necessarily the briquette quality. The briquette formulation did not significantly influence the calorific value. With a higher heating value of 16.08 MJ kg−1 dry basis, rice husk briquettes represent an interesting alternative to fuelwood.  相似文献   
86.
The effective deoxygenation of oxygenates remains a major challenge that needs to be overcome for industrial‐scale conversion of biomass to fuels. Present technology uses expensive gaseous hydrogen for deoxygenation. This work looks at the possibility of using methane or natural gas as an alternative for the deoxygenation process. Catalytic pyrolysis studies were carried out using furan as the model oxygenate in the presence of methane in a fixed‐bed reactor over 5 % Ni/HZSM‐5 as catalyst. The effects of temperature and space velocity on the catalyst activity, reaction kinetics, and deactivation behavior were studied. It was found that the deoxygenation of furan was first and second order with respect to furan and methane concentration, respectively. Deactivation studies suggested that catalyst deactivation takes place through poisoning, fouling, and sintering.  相似文献   
87.
The U.S. is the world's leading consumer of primary energy. A large fraction of this energy is used in boiler installations to generate steam and hot water for heating applications. It is estimated there are total 163,000 industrial and commercial boilers in use in the United States of all sizes.This paper characterizes the commercial and industrial boilers in the 37 states of the Midwest, Northeast, and Southern regions of the U.S. in term of number of units, unit capacity, aggregate capacity, and fuel type. A methodology is developed for evaluating and ranking the potential for converting from existing fossil-fuel boilers to biomass boilers in these states.In total, 3495 oil and coal boiler units in industrial and commercial buildings, and 1067 major wood energy facilities in the 37 eastern states were identified. These represent a subset of existing and potential conversions from fossil fuels to woody biomass. Based on this sample and energy consumption data from the Energy Information Administration (EIA), we estimate that there are currently 31,776 oil, coal, and propane boiler units over 0.5 MMBtus/hour capacity in these 37 states, representing a total energy consumption of 1.7 quadrillion Btus, or roughly the equivalent of 287 million barrels of oil. Were these units all converted to woody biomass fuel, they would consume a total of 121 million dry tons of wood per year, about three times the most recent US DOE estimates of woody biomass availability in those regions. Since only the most economical conversions typically occur, the reality of woody biomass market availability combined with thermal fossil-fuel consumption patterns suggests that roughly one-third of all potential projects could be achieved under sustainable utilization of existing biomass feedstocks in the three regions.Analysis of the results indicates that a targeted response to wood-conversion initiatives will yield the most successful program of fossil-fuel replacement in thermal applications. A ranking index developed in this study through analysis of existing boiler installations and availability of wood feedstocks suggests that the top ten states in the eastern United States on which to focus future messaging, feasibility studies, and policy development for potential woody biomass conversions are:1. Maine, 2. Texas, 3. New York, 4. Florida, 5. Georgia, 6. Alabama, 7. South Carolina, 8. North Carolina, 9. Arkansas, 10. Pennsylvania.  相似文献   
88.
Yarrowia lipolytica is known to have the ability to assimilate hydrophobic substrates like triglycerides, fats, and oils, and to produce single-cell oils, lipases, and organic acids. The aim of the present study was to investigate the effects of different oil sources (borage, canola, sesame, Echium, and trout oils) and oil industry residues (olive pomace oil, hazelnut oil press cake, and sunflower seed oil cake) on the growth, lipid accumulation, and lipase and citric acid production by Y. lipolytica YB 423-12. The maximum biomass and lipid accumulation were observed with linseed oil. Among the tested oil sources and oil industry residues, hazelnut oil press cake was the best medium for lipase production. The Y. lipolytica YB 423-12 strain produced 12.32 ± 1.54 U/mL (lipase activity) of lipase on hazelnut oil press cake medium supplemented with glucose. The best substrate for citric acid production was found to be borage oil, with an output of 5.34 ± 0.94 g/L. The biotechnological production of valuable metabolites such as single-cell oil, lipase, and citric acid could be achieved by using these wastes and low-cost substrates with this strain. Furthermore, the cost of the bio-process could also be significantly reduced by the utilization of various low-cost raw materials, residues, wastes, and renewable resources as substrates for this yeast.  相似文献   
89.
In this study, Elbistan lignite (EL) and manure were liquefied under catalytic conditions in an inert atmosphere. Red mud, tetralin, and distilled water were used as a catalyst and solvent, respectively. The liquefaction studies were carried out under catalytic conditions in the catalyst concentration of 9%, solvent/solid ratio of 3/1, reaction time of 60 min, waste/lignite ratio of 1/3, and at temperature of 400°C. Stirring speed and initial nitrogen pressure were kept constant at 400 rpm and 20 bar, respectively. At the end of liquefaction process, the soluble liquefaction products were separated by successive solvent extraction to preasphaltene, asphaltene, and oils. Oil products characterized by H-NMR to be able to differ hydrogen transfer from manure to EL surface. To obtain the hydrogen transfer way, liquefaction experiments conducted under inert atmosphere which does not related to hydrogen reaction, other above experimental conditions were kept same but only solvent type changed. The reason of using distilled water instead of tetraline is tetraline known as hydrogen donor but not water. Because water behaves supercritical conditions during the liquefaction stage. EL liquefied alone while using tetraline however EL liquefied with manure with using distilled water as a solvent. The obtained oil products form both experiments characterized by H-NMR. The radical groups diffraction and range values are not changed significantly shows that manure behaved as an hydrogen donor. So, EL with manure is the one great option to reduce cost of hydrogen source for direct coal liquefaction plant.  相似文献   
90.
Small-scale biomass boiler development is often based on empirical methods resulting in high efforts for experimental test runs using several prototypes. CFD simulations are able to reduce both, development time and efforts for tests and prototypes, supposing that the models reliability is high and its computational effort is low. Extreme air-staging with an initial gasification stage and a subsequent fuel gas burnout in a downstream gas-burner is a promising new method to reduce NOX and PM emissions in small-scale biomass boilers. Gasification conditions in the first combustion stage lead to high accumulation of gaseous tars in the fuel gas contributing challenges for combustion simulation because common CFD models use 2 or 3-step global methane reaction schemes to describe combustion chemistry. In this work, the performance of a computationally inexpensive steady flamelet model (SFM) together with a detailed reaction mechanism (18 species, 42 reactions) was scrutinized. In order to evaluate the performance of the SFM, two furnace designs were examined, running under different load shifts and various excess air ratio. Comparative numerical simulations were performed with classical species transport models. The numerical simulations and the experiments for validation were carried out on a wood-chip boiler with a heat output of 40 kW. Results show that flue gas temperature, flame shape, main flue gas concentrations and NOX can be quantitatively predicted. The SFM shows also reasonable good predictions for CO variation trends. With the present approach, calculation time can be reduced by 90% compared to commonly used models (EDC). The SFM provides sufficiently accurate results within 24 h using a standard processor consisting of six cores (mesh size 1.5 million elements). Thus, the presented model is a perfectly suitable method for applied science and industrial research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号