首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4198篇
  免费   44篇
  国内免费   105篇
电工技术   27篇
综合类   86篇
化学工业   226篇
金属工艺   455篇
机械仪表   808篇
建筑科学   184篇
矿业工程   25篇
能源动力   154篇
轻工业   19篇
水利工程   1篇
石油天然气   52篇
武器工业   12篇
无线电   40篇
一般工业技术   1841篇
冶金工业   205篇
原子能技术   46篇
自动化技术   166篇
  2024年   1篇
  2023年   25篇
  2022年   32篇
  2021年   64篇
  2020年   43篇
  2019年   58篇
  2018年   55篇
  2017年   69篇
  2016年   159篇
  2015年   267篇
  2014年   209篇
  2013年   280篇
  2012年   221篇
  2011年   315篇
  2010年   182篇
  2009年   252篇
  2008年   227篇
  2007年   231篇
  2006年   232篇
  2005年   191篇
  2004年   184篇
  2003年   171篇
  2002年   123篇
  2001年   117篇
  2000年   89篇
  1999年   92篇
  1998年   124篇
  1997年   67篇
  1996年   77篇
  1995年   64篇
  1994年   45篇
  1993年   18篇
  1992年   14篇
  1991年   9篇
  1990年   10篇
  1989年   6篇
  1988年   9篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
排序方式: 共有4347条查询结果,搜索用时 218 毫秒
81.
In the present paper, a three dimensional finite element method (FEM) is used to compute the stress intensity factor (SIF) in straight lugs of Aluminum 7075-T6. Extended finite element method (XFEM) capability available in ABAQUS is used to calculate the stress intensity factor. Crack growth and fatigue life of single through-thickness and single quarter elliptical corner cracks in attachment lug are estimated and then compared with the available experimental data for two different load ratios equal to 0.1 and 0.5. The SIF calculated from XFEM shows that the introduction of different loading boundary conditions significantly affect the estimated fatigue life.  相似文献   
82.
A mesoscale model of fatigue crack formation and stress–strain behavior in crystalline alloys entitled Sistaninia–Niffenegger Fatigue (SNF) model is applied to AISI 316L austenitic stainless steel. An inelastic hysteresis energy criterion in conjunction with continuum damage modeling provides a strong tool for studying the behavior of the austenitic steel under cyclic loading. The model predictions are validated against fatigue experimental data. The results show that this microstructural-based modeling approach is capable for predicting the behavior of the steel even under complex loading conditions. It can reproduce and help to understand well known fatigue experimental facts, e.g. the effect of grain size and initial defects, by considering the anisotropic behavior of crystalline materials at the level of the microstructure.  相似文献   
83.
A Bayesian approach is presented for selecting the most probable model class among a set of damage mechanics models for fatigue damage progression in composites. Candidate models, that are first parameterized through a Global Sensitivity Analysis, are ranked based on estimated probabilities that measure the extent of agreement of their predictions with observed data. A case study is presented using multi-scale fatigue damage data from a cross-ply carbon–epoxy laminate. The results show that, for this case, the most probable model class among the competing candidates is the one that involves the simplest damage mechanics. The principle of Ockham’s razor seems to hold true for the composite materials investigated here since the data-fit of more complex models is penalized, as they extract more information from the data.  相似文献   
84.
Comparative fatigue tests were conducted on as-welded, weld toe peened specimens before and after fatigue loading. Fracture surface, residual stress, microstructure and hardness were determined. The test results showed that as the pre-fatigue loading period extended, deeper cracks may have initiated and propagated and the fatigue life improvement decreased. The processes of ultrasonic peening on welded joints with existing cracks were modeled by finite element analysis. The numerical results indicated that the mechanism of UIT improving fatigue performance included two factors: compressive residual stress and the change of crack orientation. Both effects reduced as the crack became deeper.  相似文献   
85.
Tensile fatigue tests of PEEK at high load levels were carried out and analyzed regarding the dynamic mechanic behavior of the material during the tests. The experiments were conducted in the high stress tensile regime of PEEK. After a short period of unsteady temperature increase distinct material changes were observed during the tests at medium and high load levels. The storage modulus increased continuously while the loss modulus, loss factor (tan δ) and the dissipation energy rate decreased continuously. It was concluded that the accumulation of residual stresses because of partially irreversible deformation causes this effect.  相似文献   
86.
The relationships between fatigue strength and ultimate tensile strength as well as hardness have been studied in high-strength NZK alloys (Mg–yNd–zZn–xZr) and other magnesium alloys. In the absence of casting defects, clear linear relationships have been found between the fatigue strength and the ultimate tensile strength and the hardness values in these magnesium alloys in both T4 (solutionized) and T6 (solutionized and aged) conditions. The fatigue strength models developed in this work alloys can be directly applied to other defect-free magnesium alloys.  相似文献   
87.
In this study, AISI 2205 duplex stainless steel, most commonly used in its class and economical AISI 1020 steel couple with low carbon content, were connected using different operation parameters through friction welding. Tension test and rotary bending fatigue test were applied to the welded connections, and the impact of the welding parameters on fatigue strength was examined. It was discovered that when the welding parameters used in connecting AISI 2205 and AISI 1020 steel couple through friction welding were selected correctly, fatigue strength of the connection would increase compared to the main material, and incompliant parameters decreased fatigue strength.  相似文献   
88.
The fatigue life of SUH660 steel is dominated by crack initiation in the region of very high cycle fatigue owing to the new crack initiation behavior near the tip of temporarily arrested crack. The effect of internal hydrogen on very high cycle fatigue life is investigated focused on crack initiation life via fatigue and Vickers hardness tests. Hydrogen inhibits cracks initiation, and accelerates the increase in crack initiation lives with decreasing stress in low and medium hardness zones. Hydrogen increases the hardness in low and medium hardness zones. Hydrogen extends new crack initiation lives and causes longer very high cycle fatigue life.  相似文献   
89.
Polyethylene, as non-polar material, shows a high affinity especially to liquid non-polar aromatic and aliphatic hydrocarbons, and liquid hydrocarbons (LHC) to a certain extent migrate into the bulk material by sorption, leading to material plasticization (i.e., drop in modulus and yield stress). This paper aims to study the crack growth mechanism and failure behavior of commercial pipe grade materials when exposed to deionized water or LHC (90/10 wt% i-octane/toluene) under the simultaneous application of cyclic loads. The results of the cyclic crack growth experiments with three PE 100 pipe grades, using cracked round bar (CRB) specimens and performed at two different temperatures (35 °C and 60 °C), are compared in terms of the specimen lifetimes, and the micro-modes and kinetics of failure by referring to concepts of fracture mechanics. Most importantly, while crack advance is preceded by crack-tip crazing in water, shear yielding takes place at crack-tips in the LHC environment.  相似文献   
90.
In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. To measure the local deformations on the strands, a novel method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires along the length of the monostrand. Information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of a monostrand undergoing flexural deformations is provided. From the series of dynamic fatigue tests, a fretting fatigue spectrum is derived and compared with the localized bending fatigue spectrum. The presented spectra can be used for the estimation of monostrand bending fatigue life. The results presented herein form the basis for the development of a fretting failure criterion for monostrand cables experiencing transverse displacements and are of special interest for the fatigue analysis of modern stay cable assemblies where fretting constitutes a major mechanism of the fatigue life reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号