首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278405篇
  免费   22630篇
  国内免费   12219篇
电工技术   17307篇
技术理论   27篇
综合类   18861篇
化学工业   44459篇
金属工艺   15866篇
机械仪表   17813篇
建筑科学   21959篇
矿业工程   8803篇
能源动力   7949篇
轻工业   17486篇
水利工程   4971篇
石油天然气   18244篇
武器工业   2299篇
无线电   31494篇
一般工业技术   32428篇
冶金工业   14277篇
原子能技术   2957篇
自动化技术   36054篇
  2024年   505篇
  2023年   4421篇
  2022年   6852篇
  2021年   10967篇
  2020年   8780篇
  2019年   7089篇
  2018年   7802篇
  2017年   8876篇
  2016年   7384篇
  2015年   10603篇
  2014年   13677篇
  2013年   16526篇
  2012年   18438篇
  2011年   19867篇
  2010年   17476篇
  2009年   16682篇
  2008年   16410篇
  2007年   15489篇
  2006年   15792篇
  2005年   13476篇
  2004年   9249篇
  2003年   7949篇
  2002年   7477篇
  2001年   6657篇
  2000年   6663篇
  1999年   7257篇
  1998年   5912篇
  1997年   4829篇
  1996年   4477篇
  1995年   3780篇
  1994年   3017篇
  1993年   2094篇
  1992年   1641篇
  1991年   1290篇
  1990年   967篇
  1989年   783篇
  1988年   568篇
  1987年   357篇
  1986年   271篇
  1985年   192篇
  1984年   137篇
  1983年   95篇
  1982年   117篇
  1981年   93篇
  1980年   73篇
  1979年   36篇
  1978年   26篇
  1977年   20篇
  1976年   36篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   
2.
Samples in Si–Al-R-O-N (R = Y, Gd, Yb) systems were prepared by solid-state reactions using R2O3, Al2O3, SiO2 and Si3N4 powders as starting materials. X-ray diffraction was done to investigate RAM-J(R) solid solutions [RAM = R4Al2O9, J(R) = R4Si2N2O7] formation and their equilibrium with RSO (R4Si2O10). Phase relations between RAM, J(R) and RSO at 1700 °C were summarized in a phase diagram. It was determined that a limited solid solution of RAM and RSO could be formed along RAM-RSO tie-line, while RAM and J(R) form a continuous solid solution along RAM-J(R) tie-line. In RAM-J(R)-RSO ternary systems, the RAM-J(R) tie-lines were extended towards the RSO corner to form a continuous solid solution area of JRAMss (R = Y, Gd, Yb). The established phase relations in the Si–Al-R-O-N (R = Y, Gd, Yb) systems may facilitate compositional selections for developing JRAMss as monolithic ceramics or for SiC/Si3N4 based composites using the solid-solutions as a second refractory phase.  相似文献   
3.
In this study, C/SiOC and C/SiO2 composites were prepared by using carbonaceous microspheres with different surface functional groups. Carbonaceous microspheres based on hydrothermal reaction of glucose contains hydroxyl group, while the surface carboxyl group increases after NaOH etching. The hydroxyl group increases the oxygen-enriched structural units of SiOC ceramics, and the C spheres are closely enwrapped in SiOC matrix after pyrolysis at 900 °C. However, the interfacial reaction of surface carboxyl with Si–OH results in the formation of cristobalite SiO2, and C spheres are not only encased inside the SiOC matrix, but also dispersed outside of SiOC ceramics. After removal of C via calcination at 500 °C for 5 h, C/SiOC and C/SiO2 composites are transformed into amorphous SiO2 and cristobalite SiO2, respectively. The thermogravimetric analysis indicates the oxidation resistance of SiOC is superior to that of C and SiO2.  相似文献   
4.
Refining ceramic microstructures to the nanometric range to minimize light scattering provides an interesting methodology for developing novel optical ceramic materials. In this work, we reported the fabrication and properties of a new nanocomposite optical ceramic of Gd2O3-MgO. The citric acid sol-gel combustion method was adopted to fabricate Gd2O3-MgO nanocomposites with fine-grain sizes, dense microstructures and homogeneous phase domains. Nanopowders with low agglomeration and improved sinterability can be obtained by elaborating Φ values. Further refining of the microstructure of the nanocomposites was achieved by elaborating the hot-pressing conditions. The sample sintered at 65 MPa and 1300 °C showed a quite high hardness value of 14.3 ± 0.2 GPa, a high transmittance of 80.3 %–84.7 % over the 3?6 μm wavelength range, due mainly to its extremely fine-grain size of Gd2O3 and MgO (93 and 78 nm, respectively) and high density.  相似文献   
5.
Immunotherapy is an efficient approach to clinical oncology. However, the immune privilege of the central nervous system (CNS) limits the application of immunotherapeutic strategies for brain cancers, especially glioblastoma (GBM). Tumor resistance to immune checkpoint inhibitors is a further challenge in immunotherapies. To overcome the immunological tolerance of brain tumors, a novel multifunctional nanoparticle (NP) for highly efficient synergetic immunotherapy is reported. The NP contains an anti-PDL1 antibody (aPDL1), upconverting NPs, and the photosensitizer 5-ALA; the surface of the NP is conjugated with the B1R kinin ligand to facilitate transport across the blood-tumor-barrier. Upon irradiation with a 980 nm laser, 5-ALA is transformed into protoporphyrin IX, generating reactive oxygen species. Photodynamic therapy (PDT) further promotes intratumoral infiltration of cytotoxic T lymphocytes and sensitizes tumors to PDL1 blockade therapy. It is demonstrated that combining PDT and aPDL1 can effectively suppress GBM growth in mouse models. The proposed NPs provide a novel and effective strategy for boosting anti-GBM photoimmunotherapy.  相似文献   
6.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
7.
To benefit from recent advances in modeling and computational algorithms,as well as the availability of new covariance data,sensitivity and uncertainty analyses are needed to quantify the impact of uncertain sources on the design parameters of small prismatic high-temperature gas-cooled reactors(HTGRs).In particular,the contribution of nuclear data to the keff uncertainty is an important part of the uncertainty analysis of small-sized HTGR physical calculations.In this study,a small-sized HTGR designed by China Nuclear Power Engineering Co.,Ltd.was selected for keff uncertainty analysis during full lifetime burnup calculations.Models of the cold zero power(CZP)condition and full lifetime burnup process were constructed using the Reactor Monte Carlo Code RMC for neutron transport calculation,depletion calculation,and sensitivity and uncertainty analysis.For the sensitivity analysis,the Contribution-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance Characterization(CLUTCH)method was applied to obtain sensitive infor-mation,and the"sandwich"method was used to quantify the keff uncertainty.We also compared the keff uncertainties to other typical reactors.Our results show that 235U is the largest contributor to keff uncertainty for both the CZP and depletion conditions,while the contribution of 239Pu is not very significant because of the design of low discharge burnup.It is worth noting that the radioactive capture reaction of 28Si significantly contributes to the keff uncer-tainty owing to its specific fuel design.However,the keff uncertainty during the full lifetime depletion process was relatively stable,only increasing by 1.12%owing to the low discharge burnup design of small-sized HTGRs.These numerical results are beneficial for neutronics design and core parameters optimization in further uncertainty prop-agation and quantification study for small-sized HTGR.  相似文献   
8.
针对呼吸道系统疾病与大气 PM2:5、 SO2 浓度序列的相关性特征, 应用多重分形消除趋势波动分析法 (MF-DCCA), 对张家界市永定区呼吸道系统疾病患病人数与大气 PM2:5、 SO2 浓度序列进行了研究。结果发现该地区 呼吸道系统疾病患病人数与大气 PM2:5、 SO2 浓度的相关性具有长期持续特征和多重分形特征。随后对它们相关性 多重分形特征的动力来源进行了分析, 通过随机重排和相位随机处理, 结果表明在不同时间尺度上的长期持续性影响 是其主要动力来源。进一步研究发现该地区呼吸道系统疾病与大气 PM2:5、 SO2 浓度序列的相关性在四个季节均具 有长期持续性的多重分形特征, 且夏季多重分形特征相对强于其他季节。  相似文献   
9.
With the blossom of information industry, electromagnetic wave technology shows increasingly potential in many fields. Nevertheless, the trouble caused by electromagnetic waves has also drawn extensive attention. For instance, electromagnetic pollution can threaten information safety in vital fields and the normal function of delicate electronic devices. Consequently, electromagnetic pollution and interference become an urgent issue that needs to be addressed. Carbon nanotubes (CNTs) have become a potential candidate to deal with these problems due to many advantages, such as high dielectric loss, remarkable thermodynamic stability, and low density. With the appearance of climbing demands, however, the carbon nanotubes combining various composites have shown greater prospects than the single CNTs in microwave absorbing materials. In this short review, recent advances in CNTs-based microwave absorbing materials were comprehensively discussed. Typically, we introduced the electromagnetic wave absorption mechanism of CNTs-based microwave absorbing materials and generalized the development of CNTs-based microwave absorbers, including CNTs-based magnetic metal composites, CNTs-based ferrite composites, and CNTs-based polymer composites. Ultimately, the growing trend and bottleneck of CNTs-based composites for microwave absorption were analyzed to provide some available ideas to more scientific workers.  相似文献   
10.
A self-nanoemulsifying drug delivery system (SNEDDS) was developed to enhance the absorption of heparin after oral administration, in which heparin was compounded with phospholipids to achieve better fat solubility in the form of heparin-phospholipid (HEP-Pc) complex. HEP-Pc complex was prepared using the solvent evaporation method, which increased the solubility of heparin in n-octanol. The successful preparation of HEP-Pc complex was confirmed by differential scanning calorimetry (DSC), Fourier-transform infrared (FT-IR) spectroscopy, NMR, and SEM. A heparin lipid microemulsion (HEP-LM) was prepared by high-pressure homogenization and characterized. HEP-LM can enhance the absorption of heparin after oral administration, significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT) in mice, and reduce fibrinogen (FIB) content. All these outcomes indicate that HEP-LM has great potential as an oral heparin formulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号