首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9110篇
  免费   880篇
  国内免费   210篇
电工技术   584篇
综合类   269篇
化学工业   1762篇
金属工艺   477篇
机械仪表   624篇
建筑科学   786篇
矿业工程   348篇
能源动力   292篇
轻工业   750篇
水利工程   133篇
石油天然气   489篇
武器工业   39篇
无线电   837篇
一般工业技术   1188篇
冶金工业   352篇
原子能技术   40篇
自动化技术   1230篇
  2024年   27篇
  2023年   212篇
  2022年   235篇
  2021年   461篇
  2020年   351篇
  2019年   342篇
  2018年   404篇
  2017年   423篇
  2016年   339篇
  2015年   468篇
  2014年   633篇
  2013年   729篇
  2012年   821篇
  2011年   856篇
  2010年   728篇
  2009年   609篇
  2008年   543篇
  2007年   506篇
  2006年   525篇
  2005年   392篇
  2004年   192篇
  2003年   141篇
  2002年   87篇
  2001年   35篇
  2000年   34篇
  1999年   40篇
  1998年   15篇
  1997年   9篇
  1996年   10篇
  1995年   13篇
  1994年   5篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
1.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
2.
A numerical model is developed for surface crack propagation in brittle ceramic coatings, aiming at the intrinsic failure of rare-earth silicate environmental barrier coating systems (EBCs) under combustion conditions in advanced gas turbines. The main features of progressive degradation of EBCs in such conditions are captured, including selective silica vaporization in the top coat due to exposure to water vapor, diffusion path-dependent bond coat oxidation, as well as crack propagation during cyclic thermal loading. In light of these features, user-defined subroutines are implemented in finite element analysis, where surface crack growth is simulated by node separation. Numerical results are validated by existing experimental data, in terms of monosilicate layer thickening, thermal oxide growth, and fracture behaviors. The experimentally observed quasi-linear oxidation in the early stage is also elucidated. Furthermore, it is suggested that surface crack undergoes rapid propagation in the late stage of extended thermal cycling in water vapor and leads to catastrophic failure, driven by both thermal mismatch and oxide growth stresses. The latter is identified as the dominant mechanism of penetration. Based on detailed analyses of failure mechanisms, the optimization strategy of EBCs composition is proposed, balancing the trade-off between mechanical compliance and erosion resistance.  相似文献   
3.
Lithium metal anodes (LMAs) are promising for next-generation batteries but have poor compatibility with the widely used carbonate-based electrolytes, which is a major reason for their severe dendrite growth and low Coulombic efficiency (CE). A nitrate additive to the electrolyte is an effective solution, but its low solubility in carbonates is a problem that can be solved using a crown ether, as reported. A rubidium nitrate additive coordinated with 18-crown-6 crown ether stabilizes the LMA in a carbonate electrolyte. The coordination promotes the dissolution of NO3 ions and helps form a dense solid electrolyte interface that is Li3N-rich which guides uniform Li deposition. In addition, the Rb (18-crown-6)+ complexes are adsorbed on the dendrite tips, shielding them from Li deposition on the dendrite tips. A high CE of 97.1% is achieved with a capacity of 1 mAh cm−2 in a half cell, much higher than when using the additive-free electrolyte (92.2%). Such an additive is very compatible with a nickel-rich ternary cathode at a high voltage, and the assembled full battery with a cathode material loading up to 10 mg cm−2 shows an average CE of 99.8% over 200 cycles, indicating a potential for practical use.  相似文献   
4.
Surface-deposited pathogens are sources for the spread of infectious diseases. Protecting public facilities with a replaceable or recyclable antifouling coating is a promising approach to control pathogen transmission. However, most antifouling coatings are less effective in preventing pathogen-contained respiratory droplets because these tiny droplets are difficult to repel, and the deposited pathogens can remain viable from hours to days. Inspired by mucus, an antimicrobial supramolecular organogel for the control of microdroplet-mediated pathogen spread is developed. The developed organogel coating harvests a couple of unique features including localized molecular control-release, readily damage healing, and persistent fouling-release properties, which are preferential for antifouling coating. Microdroplets deposited on the organogel surfaces will be spontaneously wrapped with a thin liquid layer, and will therefore be disinfected rapidly due to a mechanism of spatially enhanced release of bactericidal molecules. Furthermore, the persistent fouling-release and damage-healing properties will significantly extend the life-span of the coating, making it promising for diverse applications.  相似文献   
5.
针对旅行商问题适用范围存在的局限性,结合实际的仓库拣货作业优化实例开展研究.考虑仓库内各货位点之间的相对位置关系以及拣货员可能行走的路线,设计出关于拣货员行走路线的分类算法;提出虚拟点的概念来解决旅行商问题求解时起点、终点不一致的问题;利用虚拟点,根据任务单要求找出拣货员所有的最优位置访问顺序;比较每一种情况,得到拣货员的最优路径,以实现缩短拣货总时间、减少人力和物力的总目标,较好地提高拣货效率.  相似文献   
6.
7.
Taking air freezing (AF) as the reference, the effects of four types of multi-compound freezing medium for cryogenic liquid quick-freezing (immersion freezing, IF) on the freezing rate, quality and myofibrillar protein (MP) denaturation of red drum (Sciaenops ocellatus) fillets during frozen storage (−18°C) from days 0 to 90 were studied. Samples were gathered on days 0, 15, 30, 45, 60 and 90 for analysis. The results showed that IF groups (IF-1: 20% ethanol, 30% propylene glycol, 10% sodium chloride aqueous solution; IF-2: 20% ethanol, 20% propylene glycol, 10% glycerol, 10% sodium chloride aqueous solution; IF-3: 20% ethanol, 20% propylene glycol, 10% polyethylene glycol, 10% sodium chloride aqueous solution; IF-4: 20% ethanol, 20% propylene glycol, 5% glycerol, 5% polyethylene glycol, 10% sodium chloride aqueous solution) significantly shortened the time to cross the formation zone of maximum ice crystals while the freezing rate was 6.13 times higher than the AF group after adding 30% propylene glycol as the freezing medium. Furthermore, compared with the AF group, the IF groups significantly reduced losses in the water-holding capacity, the myofibrillar fragmentation index, microstructure damage, texture characteristics, drip loss and water migration (P < 0.05). In addition, the MP of IF groups had higher maximum transition temperatures (Tmax1 and Tmax2), total sulfhydryl content, Ca2+-ATPase activity and relative α-helix content compared with the AF group. In conclusion, IF could significantly increase the freezing rate of red drum fillets, and slow down quality deterioration and denaturation of MP during frozen storage for 90 days (−18°C). In particular, IF-2 (20% ethanol, 20% propylene glycol, 10% glycerol, 10% sodium chloride aqueous solution) was found to be more suitable for the immersion freezing of marine fish among the four multi-compound freezing medium.  相似文献   
8.
Electrocatalytic nitrogen reduction reaction (NRR) is a promising strategy for ammonia (NH3) production under ambient conditions. However, it is severely impeded by the challenging activation of the NN bond and the competing hydrogen evolution reaction (HER), which makes it crucial to design electrocatalysts rationally for efficient NRR. Herein, the rational design of bismuth (Bi) nanoparticles with different oxidation states embedded in carbon nanosheets (Bi@C) as efficient NRR electrocatalysts is reported. The NRR performance of Bi@C improves with the increase of Bi0/Bi3+ atomic ratios, indicating that the oxidation state of Bi plays a significant role in electrochemical ammonia synthesis. As a result, the Bi@C nanosheets annealed at 900  ° C with the optimal oxidation state of Bi demonstrate the best NRR performance with a high NH3 yield rate and remarkable Faradaic efficiency of 15.10  ± 0.43% at − 0.4 V versus RHE. Density functional theory calculations reveal that the effective modulation of the oxidation state of Bi can tune the p-filling of active Bi sites and strengthen adsorption of *NNH, which boost the potential-determining step and facilitate the electrocatalytic NRR under ambient conditions. This work may offer valuable insights into the rational material design by modulating oxidation states for efficient electrocatalysis.  相似文献   
9.
A novel ternary hybrid flame retardant named P-g-C3N4@PGS-Ti was prepared through step-by-step method. First, titanium dioxide was loaded on PGS to make PGS-Ti (where PGS = palygorskite), and then, PGS-Ti was decorated by phosphor-doped g-C3N4 (abbreviated as P-g-C3N4) to prepare a ternary flame retardant of P-g-C3N4@PGS-Ti. It showed that P-g-C3N4@PGS-Ti could efficiently improve the flame retardancy of epoxy resins (EP). The structure and the morphology of P-C3N4@PGS-Ti were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scaanning electron microscopy and hermogravimetric analysis (TGA). The flame retardancy and the burning behavior of 5 wt% P-g-C3N4@PGS-Ti composited EP were well investigated through TGA, limiting oxygen index (LOI), cone calorimeter test (CCT) and vertical burning test (UL-94 standard). It was found that the peak heat releasing (pk-HRR) of the EP/P-g-C3N4@PGS-Ti composite reduced 36% (from 1459 to 852 kW/m2) with the addition of 5 wt% of P-g-C3N4@PGS-Ti flame retardant to the matrix of EP. The combustion residue analysis showed that the EP/P-g-C3N4@PGS-Ti composite gained the most continuous and firmest char yield due to the synergistic effect of PGS, TiO2 and the introducing of P element. The mechanism proved that the combination of gas phase and condensed phase flame-retardant processes were well coordinated to improve the fire retardancy for EP. We tested and studied the mechanical properties of EP/P-g-C3N4@PGS-Ti composites. Only 2.4% decreasing of flexural strength and 23.5% decreasing of impact strength in EP/P-g-C3N4@PGS-Ti composites compared to pure EP, respectively. But according to the test results of EP/P-g-C3N4@PGS-Ti composite material and the control sample in the system, EP/P-g-C3N4@PGS-Ti composite material had the highest flexural modulus and impact strength.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号