首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1493篇
  免费   152篇
  国内免费   124篇
电工技术   24篇
综合类   71篇
化学工业   328篇
金属工艺   165篇
机械仪表   41篇
建筑科学   10篇
矿业工程   7篇
能源动力   33篇
轻工业   68篇
水利工程   5篇
石油天然气   2篇
武器工业   4篇
无线电   502篇
一般工业技术   407篇
冶金工业   57篇
原子能技术   6篇
自动化技术   39篇
  2024年   3篇
  2023年   26篇
  2022年   28篇
  2021年   39篇
  2020年   50篇
  2019年   56篇
  2018年   36篇
  2017年   63篇
  2016年   61篇
  2015年   70篇
  2014年   55篇
  2013年   76篇
  2012年   90篇
  2011年   125篇
  2010年   75篇
  2009年   97篇
  2008年   82篇
  2007年   93篇
  2006年   102篇
  2005年   74篇
  2004年   52篇
  2003年   48篇
  2002年   45篇
  2001年   51篇
  2000年   47篇
  1999年   33篇
  1998年   29篇
  1997年   37篇
  1996年   22篇
  1995年   23篇
  1994年   13篇
  1993年   16篇
  1992年   11篇
  1991年   13篇
  1990年   8篇
  1989年   7篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1982年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有1769条查询结果,搜索用时 31 毫秒
1.
High purity AlN fiber is a promising thermal conductive material. In this work, AlN fibers were prepared using solution blow spinning followed by nitridation under N2 or NH3 atmosphere. Soluble polymer, such as polyaluminoxane, and allyl-functional novolac resin were adopted as raw materials to form homogeneous distribution of Al2O3 and C nanoparticles within the fibers, which could inhibit the growth of alumina crystal and promote their nitridation process. The effect of nitriding atmosphere on the fiber morphology was investigated. XRD results showed that complete nitridation was achieved at 1300 °C in the NH3 or at 1500 °C in the N2 atmosphere. Hollowed fiber structure was observed when fiber was nitrided in N2 at high temperature, which was caused by gaseous Al gas diffusion, and this phenomenon was eliminated in NH3 atmosphere. The nitridation mechanisms in different atmosphere were analyzed in detail. It was demonstrated that the nitridation of Al2O3 fibers in the NH3 atmosphere offered the favored AlN morphology and chemical quality. Flexible AlN fiber with O content of 0.7 wt% was achieved after nitriding in NH3 at 1400 °C. The high quality AlN can be used in thermal conductive composite materials.  相似文献   
2.
微纳米塑料是广泛存在的污染物。微小的粒径使其极易通过食物链富集于人体, 对人类健康造成潜在威胁。针对食品中微纳米塑料的高效、高灵敏度分离及表征方法是目前食品安全、分析化学等领域的研究热点。本文分析总结了从食品基质中分离提取微纳米塑料方法(密度浮选、膜分离、化学消解), 并对不同质谱技术(热分析耦合质谱法、单颗粒电感耦合等离子质谱、飞行时间二次离子质谱、基质辅助激光解吸离子化质谱、电喷雾质谱)表征微纳米塑料的优势及局限性展开了系统的综述, 旨在为食品基质中微纳米塑料高效表征的深入研究和食品质量与安全控制提供技术参考。  相似文献   
3.
When reaction-bonded silicon nitride containing MgO/Y2O3 additives is sintered at three different temperatures to form sintered reaction-bonded silicon nitride (SRBSN), the thermal conductivity increases with sintering temperature. The β-Si3N4 (silicon nitride) crystals of SRBSN ceramics were synthesized and characterized to investigate the relation between the crystal structure and the lattice oxygen content. The hot-gas extraction measurement result and the crystal structure obtained using Rietveld analysis suggested that the unit cell size of the β-Si3N4 crystal increases with the decrease in the lattice oxygen content. This result is reasonable considering that the lattice oxygen with the smaller covalent radius substitutes nitrogen with the larger one in the β-Si3N4 crystals. The lattice oxygen content decreased with increasing sintering temperature which also correlated with increase in thermal conductivity. Moreover, it is noteworthy from the viewpoint that it may be possible to apply the lattice constant analysis for the nondestructive and simple measurement of the lattice oxygen content that deteriorates the thermal conductivity of the β-Si3N4 ceramics.  相似文献   
4.
The effect of 0–12 wt% AlN addition on the electrical resistivity of SiC ceramics pressureless sintered with 0.7 wt% B4C and 2.5 wt% C additives was investigated. The elemental analysis of SiC grains revealed a codoping of Al and N in the SiC lattice with a higher N concentration with 1 wt% AlN addition and a higher Al concentration with 12 wt% AlN addition. The electrical resistivity decreased by four orders of magnitude (1.7 × 105 → 8.3 × 101 Ω cm) with 1 wt% AlN addition due to the increased carrier density (1.7 × 1010 → 2.3 × 1015 cm−3) caused by excess N-derived donors. However, subsequent AlN addition (4 → 12 wt%) led to an increase (2.9 × 103 → 1.2 × 104 Ω‧cm) in electrical resistivity due to (1) increased Al dopants which act as deep acceptors for trapping N-derived carriers causing a decrease in carrier density (2.3 × 1015 → 5.9 × 1013 cm−3), (2) the formation of electrically insulating SiC-AlN solid solution, and (3) the presence of electrically insulating AlN grains at the grain boundaries.  相似文献   
5.
《Ceramics International》2022,48(18):26022-26027
Aluminum nitride (AlN) is used a ceramic heater material for the semiconductor industry. Because extremely high temperatures are required to achieve dense AlN components, sintering aids such as Y2O3 are typically added to reduce the sintering temperature and time. To further reduce the sintering temperature, in this study, a low-melting-temperature glass (MgO–CaO–Al2O3–SiO2; MCAS) was used as a sintering additive for AlN. With MCAS addition, fully dense AlN was obtained by hot-press sintering at 1500 °C for 3 h at 30 MPa. The mechanical properties, thermal conductivity, and volume resistance of the sintered AlN–MCAS sample were evaluated and compared with those of a reference sample (AlN prepared with 5 wt% Y2O3 sintering aid sintered at 1750 °C for 8 h at 10 MPa). The thermal conductivity of AlN prepared with 0.5 wt% MCAS was 91.2 W/m?K, which was 84.8 W/m?K lower than that of the reference sample at 25 °C; however, the difference in thermal conductivity between the samples was only 14.2 W/m?K at the ceramic-heater operating temperature of 500 °C. The flexural strength of AlN–MCAS was 550 MPa, which was higher than that of the reference sample (425 MPa); this was attributed to the smaller grain size achieved by low-temperature sintering. The volume resistance of AlN–MCAS was lower than that of the reference sample in the range of 200–400 °C. However, the resistivity of the proposed AlN–MCAS sample was higher than that of the reference sample (500 °C) owing to grain-boundary scattering of phonons. In summary, the proposed sintering strategy produces AlN materials for heater applications with low production cost, while achieving the properties required by the semiconductor industry.  相似文献   
6.
《Ceramics International》2020,46(4):4289-4299
In order to propel the application of the developed CuNi-Xwt%Ti active filler metal in AlN brazing and get the universal reactive wetting mechanism between liquid metal and solid ceramic, the reactive wetting behavior and mechanism of AlN ceramic by CuNi-Xwt%Ti active filler metal were investigated. The results indicate that, with the increasing Ti content, surface tension for liquid CuNi-Xwt%Ti filler metal increases at low-temperature interval, but very similar at high-temperature interval, which influence the wetting behavior on AlN ceramic obviously. CuNi/AlN is the typical non-reactive wetting system, the wetting process including rapid wetting stage and stable stage. The wettability is depended on surface tension of the liquid CuNi filler metal completely. However, the wetting process of CuNi-8wt.%Ti/AlN and CuNi-16 wt%Ti/AlN reactive wetting system is composed by three stages, which are rapid wetting stage decided by surface tension, slow wetting stage caused by interfacial reaction and stable stage. For CuNi-8wt.%Ti/AlN and CuNi-16 wt%Ti/AlN reactive wetting system, although the surface tension of liquid filler metal is the only factor to influence the instant wetting angle θ0 at rapid wetting stage, the reduced free energy caused by interfacial reaction at slow wetting stage plays the decisive role in influencing the final wettability.  相似文献   
7.
This work reports on direct crystallization of PbZr0.53Ti0.47O3 (PZT) thin films on glass and polymeric substrates, using pulsed thermal processing (PTP). Specifically, xenon flash lamps deliver pulses of high intensity, short duration, broadband light to the surface of a chemical solution deposited thin film, resulting in the crystallization of the film. Structural analysis by X-ray diffraction (XRD) and transmission electron microscopy show the existence of perovskite structure in nano-sized grains (≤5 nm). Local functional analysis by band excitation piezoelectric spectroscopy and electrostatic force microscopy confirm the presence of a ferroelectric phase and retention of voltage-written polarization for multiple days. Based on structural and functional analyses, strategies are discussed for optimization of pulse voltage and duration for the realization of crystalline ferroelectric thin films. For ∼200 nm-thick PZT films on glass substrates, 500 μs-long pulses were required for crystallization, starting with 100 pulses at 350 V, 10 or 25 pulses at 400 V and in general lower number of pulses at higher voltages (resulting in higher radiant energy). Overall power densities of >6.4 kW/cm2 were needed for appearance of peaks corresponding to the perovskite phase in the XRD. Films on glass processed at 350–400 V had a higher degree of 111-oriented perovskite grains. Higher applied radiant energy (through increased pulse voltage or count) resulted in more random and/or partially 001-oriented films. For ∼1 μm-thick PZT films on polymeric substrates, 10 to 25 250 μs-long pulses at voltages ranging between 200 to 250 V, corresponding to power densities of ∼2.8 kW/cm2, were optimal for maximized perovskite phase crystallization, while avoiding substrate damage.  相似文献   
8.
R. Yogi 《组合铁电体》2020,205(1):114-121
Abstract

We employed density functional theory (DFT)-based first-principle calculations to reveal the structural stability and electronic properties of zigzag AlN nanoribbons (ZAlNNR) functionalized with Cl. Considered structures were found to be energetically feasible. A pure metallic character has been observed for one edge Cl functionalization, whereas for rest of the others, the band gap varies from 2.2?eV to 3.9?eV. Interestingly, a transition from indirect to direct band gap has been obtained for semiconducting ribbons due to Cl functionalization. Present findings show that Cl functionalization could be useful for the band gap engineering and absolute shifting of Fermi level in ZAlNNR.  相似文献   
9.
10.
通过理论计算的方法,系统分析了AlN在Hi-B钢铁素体中的析出形核机制。结果表明,第二相AlN粒子不同析出形核机制下的临界形核尺寸随着温度的降低而降低,形核机制不同,临界形核尺寸不相同,但均匀形核和晶界形核的临界形核尺寸较为接近,同一温度条件下,位错形核的临界形核尺寸最小。第二相AlN粒子以位错形核、均匀形核、晶界形核3种形核机制形核的最快析出温度分别为1 273、1 193、1 293K。同时,温度在1 293K以下时,取向硅钢中AlN在铁素体中以位错形核为主,温度高于1 293K后,AlN的形核机制以晶界形核为主。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号