首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   9篇
  国内免费   3篇
化学工业   111篇
金属工艺   21篇
机械仪表   1篇
矿业工程   2篇
能源动力   1篇
一般工业技术   6篇
冶金工业   1篇
自动化技术   1篇
  2023年   31篇
  2022年   18篇
  2021年   18篇
  2020年   17篇
  2019年   17篇
  2018年   14篇
  2017年   12篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(22):32877-32885
CaO–MgO–Al2O3–SiO2 (CMAS) deposition significantly degrades the performance of thermal barrier coatings (TBCs). In this study, the microstructure evolution of CMAS glass at temperatures below its melting point was investigated in order to study the potential influence of temperature on the applicability of CMAS glass in TBCs. The CMAS glass fabricated in this study had a melting point of 1240 °C, became opaque, and underwent self-crystallization when the temperature reached 1000 °C. After heat treatment at 1050 °C, diopside and anorthite phases precipitated from the glass; at a higher temperature (1150 °C), diopside, anorthite, and wollastonite were formed as the self-crystallization products. An increase in the dwelling time resulted in the transformation of diopside to wollastonite and anorthite. At 1250 °C, all products formed a eutectic microstructure and melted. The results indicate that even at low temperatures, CMAS glass underwent microstructure evolution, which could influence the coating surface and stress distribution when deposited on TBCs.  相似文献   
2.
《Ceramics International》2021,47(20):28685-28697
Because the CMAS corrosion and phase transformation at elevated temperatures above 1250 °C have limited the applications of traditional YSZ, the design of novel thermal barrier materials is a hotspot. GdTaO4 is considered as a type of potential novel thermal barrier material owing to its low thermal conductivity. In this study, the mechanical and thermal properties, CMAS corrosion resistance, and the wettability of the GdTaO4 were studied and compared with that of YSZ. The results show that the coefficient of thermal expansion and hardness of GdTaO4 are 14.1 × 10−6 K−1 (1350 °C) and 534.2 Hv0.3 respectively. The thickness of CMAS reaction layer of GdTaO4 is ~30.8 μm after 24 h reaction at 1350 °C, which is thinner than that of YSZ. After corrosion reaction, the CMAS glass aggregated instead of completely disappearing or continuously extending over the surface of GdTaO4. The main reaction product is Ca2Ta2O7, and the anorthite phase may not be detected, which is similar to YTaO4. By comparison, the dense substrate of YSZ became porous and CMAS glass has disappeared after 10 h. CMAS corrosion at 1350 °C. The on-line contact angle results show that the wettability of CMAS on GdTaO4 is worse than that on YSZ at 1350 °C, while the opposite of the work of adhesion, which indicates that GdTaO4 can remove liquid CMAS more easily than YSZ TBCs during the service. Furthermore, the corrosion depth and areas of GdTaO4 are smaller than those of YSZ in the same situation. These findings suggest that GdTaO4 possesses better high-temperature properties and CMAS corrosion resistance than YSZ as a kind of potential of thermal barrier material.  相似文献   
3.
《Ceramics International》2020,46(11):18698-18706
Three different kinds of thermal barrier coatings (TBCs) — 8YSZ, 38YSZ and a dual-layered (DL) TBCs with pure Y2O3 on the top of 8YSZ were produced on nickel-based superalloy substrate by air plasma spraying (APS). The Calcium–Magnesium–Aluminum-Silicate (CMAS) corrosion resistance of these three kinds of coatings were researched via burner rig test at 1350 °C for different durations. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD. With the increase of Y content, TBCs exhibit better performance against CMAS corrosion. The corrosion resistance against CMAS of different TBCs in descending was 8YSZ + Y2O3, 38YSZ and 8YSZ, respectively. YSZ diffused from TBCs into the CMAS, and formed Y-lean ZrO2 in TBCs because of the higher diffusion rate and solubility of Y3+ in CMAS than Zr4+. At the same time, 38YSZ/8YSZ + Y2O3 reacts with CAMS to form Ca4Y6(SiO4)6O/Y4·67(SiO4)3O with dense structure, which can prevent further infiltration of CMAS. The failure of 8YSZ coatings occurred at the interface between the ceramic coating and the thermally grown oxide scale (TGO)/bond coating. During the burner rig test, the Y2O3 layer of the DL TBCs peeled off progressively and the 8YSZ layer exposed gradually. DL coatings keep roughly intact and did not meet the failure criteria after 3 h test. 38YSZ coating was partially ablated, the overall thickness of the coating is thinned simultaneously after 2 h. Therefore, 8YSZ + Y2O3 dual-layered coating is expected to be a CMAS corrosion-resistant TBC with practical properties.  相似文献   
4.
Aero-engines operating in dust-laden environments often encounter a lot of dust/sand that causes a severe problem to the TBCs by means of erosion. As the turbine entry temperatures are rising, molten sand is also a big concern to the life-time of TBCs.This paper deals with the TBC behavior under the combined influence of erosion and corrosion attack. Variations in TBC morphology, CMAS infiltration time and CMAS composition and their influence on the erosion resistance at room temperature were investigated. Two different EB-PVD 7YSZ morphologies consisting of a different porosity arrangement were tested in the erosion/corrosion regime. The more ‘Feathery’ structure has a better resistance to erosion compared to a more columnar ‘Normal’ structure, which leads to less degradation of the TBC. However, under the influence of CMAS infiltration the effect was found to be reversed. In general, CMAS-infiltrated EB-PVD TBCs exhibit a higher erosion resistance than the non-infiltrated ones.  相似文献   
5.
The high-temperature (1500?°C) interactions of two promising dense, polycrystalline EBC ceramics, YAlO3 (YAP) and γ-Y2Si2O7, with a calcia-magnesia-aluminosilicate (CMAS) glass have been explored as part of a model study. Despite the fact that the optical basicities of both the EBC ceramics and the CMAS are similar, they both react with the CMAS. In the case of the Si-free YAlO3, the reaction zone is small and it comprises three regions of reaction-crystallization products, including Y-Ca-Si apatite solid-solution (ss) and Y3Al5O12 (YAG)(ss). In contrast, only Y-Ca-Si apatite(ss) forms in the case of Si-containing γ-Y2Si2O7, and the reaction zone is an order-of-magnitude thicker. These CMAS interactions are analyzed in detail, and are found to be strikingly different than those observed in Y-free EBC ceramics (β-Yb2Si2O7 and β-Sc2Si2O7) in the accompanying Part II paper. This is attributed to the presence of the Y in the YAlO3 and γ-Y2Si2O7 EBC ceramics.  相似文献   
6.
Al2O3 was deposited as a top coat on a standard 7YSZ layer (or layers) by means of EB-PVD technique and the corresponding morphology of the Al2O3/7YSZ coatings was studied in detail. This multi-layer TBC system was tested against calcium-magnesium-aluminium-silicate (CMAS) recession by performing infiltration experiments for different time intervals from 5?min to 50?h at 1250?°C using two types of synthetic CMAS compositions and Eyjafjallajökull volcanic ash (VA) from Iceland. The results show that the studied EB-PVD Al2O3/7YSZ coatings react quickly with CMAS or VA melt and form crystalline spinel (MgAl2-xFexO4) and anorthite (CaAl2Si2O4) phases. The presence of Fe-oxide in the CMAS has been found to be key element in influencing the spinel formation which was proved to be more efficient against CMAS sealing in comparison to the Fe-free CMAS compositions. Even though a rapid crystallization was assured, shrinkage cracks in the EB-PVD alumina layer produced during the crystallization heat treatment have proven to be detrimental for the CMAS/VA infiltration resistance. To overcome these microstructural drawbacks, an additional alumina deposition method, namely reaction-bonded alumina oxide (RBAO), was applied on top of EB-PVD Al2O3. RBAO acts as a sacrificial layer forming stable reaction products inhibiting further infiltration.  相似文献   
7.
Thermal barrier coatings (TBCs) produced by electron beam physical vapor deposition (EB-PVD) or plasma spray (PS) usually suffer from molten calcium-magnesium-alumino-silicate (CMAS) attack. In this study, columnar structured YSZ coatings were fabricated by plasma spray physical vapor deposition (PS-PVD). The coatings were CMAS-infiltrated at 1250?°C for short terms (1, 5, 30?min). The wetting and spreading dynamics of CMAS melt on the coating surface was in-situ investigated using a heating microscope. The results indicate that the spreading evolution of CMAS melt can be described in terms of two stages with varied time intervals and spreading velocities. Besides, the PS-PVD columnar coating (~100?μm thick) was fully penetrated by CMAS melt within 1?min. After the CMAS attack for 30?min, the original feathered-YSZ grains (tetragonal phase) in both PS-PVD and EB-PVD coatings were replaced by globular shaped monoclinic ZrO2 grains in the interaction regions.  相似文献   
8.
随着航空发动机涡轮叶片工作温度的提升,使得一种主要由CaO,MgO,Al2O3和SiO2组成的玻璃态物质(CMAS)对热障涂层的危害越来越严重,从而对热障涂层的性能和耐久性有了更高的要求。本文以电子束物理气相沉积热障涂层为研究对象,利用有限元方法研究了CMAS的渗入对界面裂纹扩展及CMAS对陶瓷层(TC)内部残余应力的影响规律。采用波长固定、振幅变化的正弦曲线表示不同粗糙度的涂层界面,同时考虑了CMAS的弹性模量变化的影响及不同界面形貌与CMAS之间的相互作用。结果表明:CMAS弹性模量的增加对界面裂纹具有抑制作用,并且TGO幅值和厚度越小,抑制作用越明显。CMAS弹性模量对TC层最大残余应力S22的影响存在临界点,在临界点之前,CMAS弹性模量的变化对TC层最大残余应力的影响较大,随着CMAS弹性模量的增加,TC层最大残余应力大幅度减小;在临界点之后,TC层最大残余应力基本不受CMAS弹性模量变化的影响。这些结果对电子束物理气相沉积喷涂的热障涂层失效机理的研究具有重要意义,可以为热障涂层界面的优化提供指导。  相似文献   
9.
镍渣微晶玻璃核化及晶化制度的研究   总被引:2,自引:1,他引:2  
以金川镍渣为主要原料采用熔融法制备建筑装饰用微晶玻璃。在成分研究的基础上,通过DSC测试、XRD、SEM和光学显微镜等分析手段,对添加了10wt%TiO2作为晶核剂的CaO-MgO-Al2O3-SiO2系统镍渣微晶玻璃试样的主晶相及微观结构进行了分析,得出了适用于该系统镍渣微晶玻璃的最佳热处理制度。  相似文献   
10.
The impact of calcium–magnesium–alumino-silicate (CMAS) degradation is a critical factor for development of new thermal and environmental barrier coatings. Several methods of preventing damage have been explored in the literature, with formation of an infiltration inhibiting reaction layer generally given the most attention. Gd2Zr2O7 (GZO) exemplifies this reaction with the rapid precipitation of apatite when in contact with CMAS. The present study compares the CMAS behavior of GZO to an alternative thermal barrier coating (TBC) material, GdAlO3 (GAP), which possesses high temperature phase stability through its melting point as well as a significantly higher toughness compared with GZO. The UCSB laboratory CMAS (35CaO–10MgO–7Al2O3–48SiO2) was utilized to explore equilibrium behavior with 50:50 mol% TBC:CMAS ratios at 1200, 1300, and 1400°C for various times. In addition, 8 and 35 mg/cm2 CMAS surface exposures were performed at 1425°C on dense pellets of each material to evaluate the infiltration and reaction in a more dynamic test. In the equilibrium tests, it was found that GAP appears to dissolve slower than GZO while producing an equivalent or higher amount of pore blocking apatite. In addition, GAP induces the intrinsic crystallization of the CMAS into a gehlenite phase, due in part to the participation of the Al2O3 from GAP. In surface exposures, GAP experienced a substantially thinner reaction zone compared with GZO after 10 h (87 ± 10 vs. 138 ± 4 μm) and a lack of strong sensitivity to CMAS loading when tested at 35 mg/cm2 after 10 h (85 ± 13 versus 246 ± 10 μm). The smaller reaction zone, loading agnostic behavior, and intrinsic crystallization of the glass suggest this material warrants further evaluation as a potential CMAS barrier and inclusion into composite TBCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号