首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18436篇
  免费   1096篇
  国内免费   383篇
电工技术   166篇
综合类   373篇
化学工业   7135篇
金属工艺   834篇
机械仪表   380篇
建筑科学   509篇
矿业工程   83篇
能源动力   2764篇
轻工业   334篇
水利工程   23篇
石油天然气   339篇
武器工业   30篇
无线电   983篇
一般工业技术   5132篇
冶金工业   290篇
原子能技术   161篇
自动化技术   379篇
  2024年   7篇
  2023年   312篇
  2022年   403篇
  2021年   583篇
  2020年   573篇
  2019年   532篇
  2018年   558篇
  2017年   650篇
  2016年   590篇
  2015年   682篇
  2014年   997篇
  2013年   1146篇
  2012年   930篇
  2011年   1751篇
  2010年   1315篇
  2009年   1289篇
  2008年   1201篇
  2007年   1075篇
  2006年   1186篇
  2005年   922篇
  2004年   720篇
  2003年   623篇
  2002年   471篇
  2001年   214篇
  2000年   182篇
  1999年   213篇
  1998年   170篇
  1997年   136篇
  1996年   105篇
  1995年   111篇
  1994年   64篇
  1993年   36篇
  1992年   28篇
  1991年   36篇
  1990年   28篇
  1989年   9篇
  1988年   11篇
  1987年   11篇
  1986年   15篇
  1985年   14篇
  1984年   11篇
  1983年   3篇
  1982年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The gas diffusion substrate (GDS) is essential in the proton exchange membrane fuel cells. Its fabrication techniques affect the performance significantly and are worthy of investigation. In this study, a manufacturing process of the GDS is proposed to understand the formation process of GDS and promote its structure and performance more pertinently. Different states during the preparation process, raw carbon paper, pre-curing, curing, carbonation, and graphitization, are characterized and measured. Experimental and numerical methods are employed to determine the relationships between microstructure, transport, and mechanical performance variation with the fabricating processes. The results show that its porosity, average pore size, and effective diffusivity decrease first and increase after curing. These parameters after graphitization are lower than that of the carbon paper (CP). The electrical resistivity increases dramatically while pre-curing and decreases gradually after curing, carbonation, and graphitization, and it is much reduced after graphitization. Moreover, mechanical measurement results show that both the picks of tensile strength and flexural modulus occur after curing. Its tensile strength shows little change after graphitization compared to the initial paper's. In contrast, the flexural modulus is improved significantly.  相似文献   
2.
Adsorbents and membranes consisting of carbon nanotube (CNT) pores with diameters of molecular dimensions are highly desirable for hydrogen storage and selective, high-flux membrane separation. However, fabrication of such materials with precise pore sizes and monodispersity as well as evaluation of the mechanisms associated to adsorption and molecular transport are challenging. Herein, we grew aluminophsphate zeolites (CoAPO-5, AFI crystal structure) consisting of one-dimensional, monodisperse parallel pores with diameter of ~7 Å, and utilized them as templates to grow singe-walled CNTs (SWNTs) inside the pores. The resulting materials were examined as adsorbents and membranes for hydrogen storage and separation, respectively, using single-gas and real mixture feeds. Detailed mechanistic analysis and fundamental investigation of permeance and adsorption behavior of the resulting CNT-in-zeolite systems via combined adsorption, equilibrium, and kinetic studies were carried out. A superior gravimetric hydrogen uptake of 1.2 wt% at 35 °C and 1 bar was achieved in the case of the SWNTs grown in the cobalt-richer AFI host. Permeability measurements were performed on the respective Co(x)APO@SWNT membranes with the Co-richAPO@SWNT membrane exhibiting the highest permeance for all studied gases as a consequence of larger and more densely packed AFI crystals along with higher number of SWNT-filled pores, assets attributed to the higher Co catalyst content. Notably, the produced composite membranes exhibited gas permeability values that were two orders of magnitude higher than what predicted by the Knudsen mechanism.  相似文献   
3.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
4.
以碳纳米管(CNT)作为核,密胺树脂(MF)作为壳,苯乙烯马来酸酐共聚物(SMA)为乳化剂,原位聚合制备微胶囊化碳纳米管(CNT-MF),并将包覆后的碳纳米管作为填料添加到硅橡胶泡沫中,制备了CNT-MF/硅橡胶泡沫复合材料。探讨了核/壳质量比对微胶囊化碳纳米管的包覆效果的影响,同时研究了微胶囊化碳纳米管用量对硅橡胶泡沫泡孔结构和介电性能的影响。结果表明,微胶囊化碳纳米管的加入有利于提高复合材料的泡孔结构,大泡孔的存在和泡孔面积有利于材料介电性能的提高。当核/壳质量比为1∶10的微胶囊化碳纳米管添加量为15 phr时,复合材料介电性能表现最佳,此时复合材料在1 kHz的介电常数为26.34,介电损耗仅为0.0136。  相似文献   
5.
In this study, air filter base paper (P) was used as the receiving substrate, polyvinyl alcohol (PVA) and PVA/multi-walled carbon nanotube (MWCNT) spinning solutions were used to prepare electrospun air filter papers (P-PVA and P-PVA/MWCNT, respectively). Then, P-PVA/MWCNT was calendered under different pressures. The effect of MWCNTs on the surface performance of P-PVA/MWCNT was explored and the influence of calendering technology on their structure and filtration characteristics was analyzed. Electron scanning microscope observation showed that the PVA nanofibers on the surface of P-PVA/MWCNT had no beading, and MWCNTs weakened the surface electrostatic phenomenon and had a good micromorphology. During the calendering process, with an increase in pressure, the mean pore size and surface roughness of P-PVA/MWCNT decreased, the initial resistance increased, and the filtration efficiency changed slightly.  相似文献   
6.
The introduction of catalyst on anode of solid oxide fuel cell (SOFC) has been an effective way to alleviate the carbon deposition when utilizing biogas as the fuel. A series of La0.6Sr0.4Co1-xNixO3-δ (x = 0, 0.2, 0.4, 0.6, 0.8) oxides are synthesized by sol-gel method and used as catalysts precursors for biogas dry reforming. The phase structure of La0.6Sr0.4Co1-xNixO3-δ oxides before and after reduction are characterized by X-ray diffraction (XRD). The texture properties, carbon deposition, CH4 and CO2 conversion rate of La0.6Sr0.4Co1-xNixO3-δ catalysts are evaluated and compared. The peak power density of 739 mW cm?2 is obtained by a commercial SOFC with La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst at 850 °C when using a mixture of CH4: CO2 = 2:1 as fuel. This shows a great improvement from the cell without catalyst for internal dry reforming, which is attributed to the formation of NiCo alloy active species after reduction in H2 atmosphere. The results indicate the benefits of inhibiting the carbon deposition on Ni-based anode through introducing the La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst precursor. Additionally, the dry reforming technology will also help to convert part of the exhaust heat into chemical energy and improve the efficiency of SOFC system with biogas fuel.  相似文献   
7.
In this study, silicon carbide (SiC) composites reinforced with pitch-based carbon fibers and composed of heat transfer channels were fabricated by combining chemical vapor infiltration and reactive melting infiltration method. It was observed that the internal heat conduction skeleton of pitch-based carbon fibers was sequentially formed. The thermal conductivities from room temperature to 500 °C along through-thickness direction and in-plane direction were investigated. The results showed that Cpf/SiC composites with heat transfer channels possessed excellent thermal conductvity in two directions, and the thermal conductivity increased with increasing volume content of heat transfer channels. The thermal conductivity in through-thickness direction reached 38.89 W/(m·K), and that for in-plane direction reached 112.42 W/(m·K). Theoretical calculations were empolyed to study the temperature dependence of the Cpf/SiC composites. The variations in slope A′ and intercept B′ values of fitted curves were in good agreement with the experimental results. To verify the reliablilty of the theoretical model, the Cpf/SiC composites were heated at 1650 °C for 2 h and the thermal conductivity exhibited further improvement due to the formation of more perfect crystalline structure. Thermal conductivity through thickness direction improved to 43.49 W/(m·K), and that in in-plane direction improved to 142.49 W/(m·K), which could be identified by the theoretical model. Finally, the leading edge model was established by using ABAQUS finite element analysis software to evaluate the potential application of the composites. Owing to the outstanding thermal conductivity, the leading edge obtained by using Cpf/SiC composites in this study exhibited lower temperature gradient and a more uniform temperature distribution. Moreover, less thermal stress and displacement were generated during heating process.  相似文献   
8.
The preparation of high-performance anode materials is of significance for enhanced power generation in microbial fuel cells (MFCs). Herein, porous carbon monolith was prepared by simple freeze drying of wax gourd and subsequent pyrolysis (WGC). β-FeOOH was coated on WGC to further improve the performance of the anode (β-FeOOH/WGC). The maximum power density of the MFCs with WGC and β-FeOOH/WGC anode was 913.9 and 1355.1 mW/m2 respectively, which was much higher than that of the control (558.2 mW/m2). WGC possessed three-dimensional pore structure, nitrogen and oxygen-containing functional groups, which endowed it with satisfactory bacterial loading. Improved MFC performance after β-FeOOH modification could be ascribed to two aspects: β-FeOOH enhanced the electrochemical activity and decrease the transfer resistance; β-FeOOH was conducive to exoelectrogens formation. This study demonstrated that the synthesis of β-FeOOH modified carbon monolith anode offered an efficient route to enhance the power generation of MFCs.  相似文献   
9.
Catalyst slurries (inks) were prepared with and without thermal treatment to determine the support/ionomer structures and interactions in the catalyst layer (CL) which impact on membrane electrode performance and durability. The thermal treatment of the ink has a nominal effect on the ionomer/support structure in which the carbon support is non-graphitised. The agglomerate/aggregate structures have a high degree of support/ionomer interface and sufficient macroporosity for water movement in the CL. This improves the membrane electrode assembly (MEA) performance, but also accelerates electrochemical carbon degradation. Thermal treatment of graphitised support-containing inks resulted in increased performance facilitated by a larger support/ionomer interface. Without thermal treatment, the more hydrophobic support would form aggregate structures in which water contact was restricted, limiting proton transfer, isolating catalyst, decreasing performance. The water limited access, would however, prolong stability during accelerates carbon degradation. The electrochemical properties were studied using full and half MEA cells.  相似文献   
10.
Black phosphorus (BP), as a new 2D material, is normally synthesized by a high-pressure and high-temperature (HPHT) method from white and red phosphorus, which severely hinders the further development of BP for any potential applications and leads to search for other potential applications of BP with big challenge. Herein, we develop a facile and efficient Thermal-Vaporization-Transformation (TVT) approach to prepare a highly active BP directly grown on carbon paper as the electrode for Oxygen evolution reaction (OER), showing a low onset potential of 1.45 V versus RHE. Simultaneously, the current density of BP-CP illustrates the excellent electro-catalysis stability only decreases by 3.4% after continuous operation for 10000 s. Meanwhile, the density functional theory (DFT) calculations further illustrates the P-doped carbon layer in the upper side of BP layer is actually responsible for its enhanced OER property, and the adjacent carbon atoms of the embedded P atoms are actually the active sites due to the induced local change distribution by intramolecular change transfer. Considering the facile, but efficient and scalable, TVT approach can directly synthesize BP-CP with excellent OER performance, which is promising for BP electrocatalysts used for OER in metal-air batteries, fuel cells, water-splitting devices, even other key renewable energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号