首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
  国内免费   2篇
化学工业   4篇
金属工艺   11篇
机械仪表   2篇
能源动力   6篇
无线电   4篇
一般工业技术   22篇
  2023年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2012年   3篇
  2011年   8篇
  2010年   3篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
The amorphous Ge2Sb2Te5 film with stoichiometric compositions was deposited by co-sputtering of separate Ge, Sb, and Te targets on SiO2/Si (100) wafer in ultrahigh vacuum magnetron sputtering apparatus. The crystallization behavior of amorphous Ge2Sb2Te5 film was investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and differential scanning calorimetry (DSC). With an increase of annealing temperature, the amorphous Ge2Sb2Te5 film undergoes a two-step crystallization process that it first crystallizes in face-centered-cubic (fcc) crystal structure and finally fcc structure changes to hexagonal (hex) structure. Activation energy values of 3.636±0.137 and 1.579±0.005 eV correspond to the crystallization and structural transformation processes, respectively. From annealing temperature dependence of the film resistivity, it is determined that the first steep decrease of the resistivity corresponds to crystallization while the second one is primarily caused by structural transformation from  相似文献   
2.
TaN-Ag nanocomposite films were deposited by reactive co-sputtering on tool steel substrates. The films were then annealed using RTA (Rapid Thermal Annealing) at 350 °C for 2, 4, 8 min respectively to induce the nucleation and growth of Ag particles in TaN matrix and on film surface. C-AFM (Conductive Atomic force Microscopy) and FESEM (Field-Emission Scanning Electron Microscopy) were applied to examine the Ag nano-particles emerged on the surface of these thin films. A nano-indenter and a pin-on-disk tribometer were used to study the effect of annealing on the films' mechanical properties. The results reveal that annealing by RTA can cause Ag nano-particles to emerge on the TaN surface. Consequently, the mechanical properties of the films will vary depending on annealing conditions, Ag content, and Ag particle emergence.  相似文献   
3.
W.S. Jung  S.M. Kang  D.H. Yoon 《Thin solid films》2008,516(16):5445-5448
ITO:Ca composite thin films were deposited on glass substrate by the rf magnetron co-sputtering method with various numbers of Ca chips and oxygen partial pressures. The carrier concentration of the ITO:Ca thin film was 7 × 1020 cm− 3 when the number of Ca chips was 4 at an oxygen partial pressure of 1.4%. The sheet resistance and optical transmittance of the ITO:Ca thin films were 68.2 Ω/sq. and 87%, respectively. The work function of the ITO:Ca thin films with 8 Ca chips was changed from 4.6 eV to 5.0 eV when the oxygen partial pressure was increased from 0.8% to 2.2%. When the oxygen partial pressure was 1.2%, a low work function of 4.6 eV was obtained for the ITO:Ca thin films.  相似文献   
4.
This study examined the characteristics of Ga:In2O3 (IGO) co-sputtered Zn:In2O3 (IZO) films prepared by dual target direct current (DC) magnetron sputtering at room temperature in a pure Ar atmosphere for transparent electrodes in IGZO-based TFTs. Electrical, optical, structural and surface properties of Ga and Zn co-doped In2O3 (IGZO) electrodes were investigated as a function of IGO and IZO target DC power during the co-sputtering process. Unlike semiconducting InGaZnO4 films, which were widely used as a channel layer in the oxide TFTs, the co-sputtered IGZO films showed a high transmittance (91.84%) and low resistivity (4.1 × 10− 4 Ω cm) at optimized DC power of the IGO and IZO targets, due to low atomic percent of Ga and Zn elements. Furthermore, the IGO co-sputtered IZO films showed a very smooth and featureless surface and an amorphous structure regardless of the IGO and IZO DC power due to the room temperature sputtering process. This indicates that co-sputtered IGZO films are a promising S/D electrode in the IGZO-based TFTs due to their low resistivity, high transmittance and same elements with channel InGaZnO4 layer.  相似文献   
5.
This work focuses on the properties of Zr–Cu–(N) deposits obtained by magnetron co-sputtering of Zr and Cu targets in pure argon or in argon nitrogen gas mixtures. Microstructure and mechanical properties (hardness and Young's modulus) were investigated versus deposition parameters. The composition of the Zr–Cu alloy films on the full binary range was accurately controlled by means of the discharge current intensity on both Zr and Cu targets. Deposits were observed to be amorphous single phased in a large range of copper content, the hardness and Young's modulus of the amorphous phase increasing with the latter. A small amount of nitrogen in the gas mixture leads to higher hardness and Young's modulus values.  相似文献   
6.
用共溅射的方法制备了Pt-C薄膜,薄膜由Pt纳米粒子和非晶C组成。电子显微镜和X射线衍射的测试结果显示Pt纳米粒子镶嵌在非晶C之中。高分辨率透射电子显微图像证实了2~3 nm的Pt粒子镶嵌于非晶C层中。Pt和Pt-C薄膜的电化学特性是通过循环伏安法来研究的,电解液为氮气饱和的0.5g/mol的硫酸溶液。与纯Pt薄膜相比,Pt-C薄膜显示了更高的电化学活性面积,这主要是由于非晶C支撑基材的存在降低了Pt纳米颗粒的粒径。  相似文献   
7.
Sputtering technique for Cu–In precursor films fabrication using different Cu and In layer sequences have been widely investigated for CuInSe2 production. But the CuInSe2 films fabricated from these precursors using H2Se or Se vapour selenization mostly exhibited poor microstructural properties. The co-sputtering technique for producing Cu–In alloy films and selenization within a close-spaced graphite box resulting in quality CuInSe2 films was developed. All films were analysed using SEM, EDX, XRD and four-point probe measurements. Alloy films with a broad range of compositions were fabricated and XRD showed mainly In, CuIn2 and Cu11In9 phases which were found to vary in intensities as the composition changes. Different morphological properties were displayed as the alloy composition changes. The selenized CuInSe2 films exhibited different microstructural properties. Very In-rich films yielded the ODC compound with small crystal sizes whilst slightly In-rich or Cu-rich alloys yielded single phase CuInSe2 films with dense crystals and sizes of about 5 μm. Film resistivities varied from 10−2–108 Ω cm. The films had compositions with Cu/In of 0.40–2.3 and Se/(Cu+In) of 0.74–1.35. All CuInSe2 films with the exception of very Cu-rich ones contained high amount of Se (>50%).  相似文献   
8.
《Ceramics International》2019,45(14):17363-17375
TiWSixN films were deposited using a magnetron co-sputtering system on silicon (111), 316L stainless steel, and M2 high-speed steel substrates. The silicon target current density was varied from 0 mA/cm2 to 4.32 mA/cm2 in order to modify the Si content in the films. The microstructure and chemical composition were determined by means of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The surface of the films was explored via scanning electron microscopy (SEM) and atomic force microscopy (AFM). Mechanical, tribological, and thermal properties were investigated by means of the nanoindentation, ball-on-disc, and cyclic oxidation tests, respectively. Our results indicated that as the silicon target current density was increased, the microstructure changed from crystalline to amorphous, and the hardness and elastic modulus improved from initial values of 7.5 ± 0.3 GPa and 181 ± 8 GPa to 15 ± 1 GPa and 229 ± 9 GPa, respectively. Furthermore, films deposited at high silicon target current exhibited better resistance to thermal oxidation. The failure mechanism of the WTiSixN thin films under cyclic oxidation was attributed to the microstructure of the films, WO3 sublimation, and the thermal coefficient mismatch between the film and the substrate.  相似文献   
9.
TaON-Ag nanocomposite thin films with Ag nano-particles embedded in TaON were prepared by reactive co-sputtering of Ta and Ag in the plasma of (O2 + N2)/Ar. The deposition temperature was either at room temperature or 300 °C. These films were characterized mainly by UV-Vis photometry and scanning electron microscopy. It is found that Ag doping into the TaON films leads to several beneficial changes on film properties. It would reduce the optical band gap and, therefore, enhance the films' photocatalytic behavior. It is also found that Ag nano-particles may emerge on the surface of TaON with or without RTA. This could be much meaningful since Ag particles' appearance is closely related to the antibacterial property of TaON-Ag films. The results show that TaON-Ag films deposited at 300 °C have an outstanding antibacterial behavior with the illumination of visible light due to the synergistic effects of Ag and photocatalytic behavior of TaON.  相似文献   
10.
C.C. Tseng  S.C. Jang  W. Wu 《Thin solid films》2009,517(17):4970-4974
TaN-Ag nanocomposite thin films with Ag nanoparticles dispersed in TaN matrix and surface were prepared by reactive co-sputtering of Ta and Ag in a plasma of N2 and Ar. The films were then annealed using RTA (Rapid Thermal Annealing) at various annealing times and annealing temperatures to induce the nucleation and growth of Ag particles in the TaN matrix and on the film surface. Transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) were applied to examine the microstructure and surface morphology of TaN-Ag thin films. It is found that Ag tends to precipitate on the columnar boundaries when Ag concentration is low. In this case, the hardness as well as the resistance-to-crack can be enhanced. When Ag concentration is high, the TaN columnar structure is disrupted which can reduce the hardness and resistance-to-crack. Overall, the results reveal that the hardness and crack resistance of these films can be controlled by varying Ag contents and annealing conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号