首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8358篇
  免费   104篇
  国内免费   157篇
电工技术   131篇
综合类   207篇
化学工业   2057篇
金属工艺   746篇
机械仪表   482篇
建筑科学   863篇
矿业工程   130篇
能源动力   774篇
轻工业   188篇
水利工程   25篇
石油天然气   66篇
武器工业   48篇
无线电   214篇
一般工业技术   1919篇
冶金工业   427篇
原子能技术   28篇
自动化技术   314篇
  2024年   2篇
  2023年   101篇
  2022年   154篇
  2021年   173篇
  2020年   186篇
  2019年   150篇
  2018年   165篇
  2017年   202篇
  2016年   153篇
  2015年   180篇
  2014年   409篇
  2013年   531篇
  2012年   462篇
  2011年   763篇
  2010年   580篇
  2009年   534篇
  2008年   548篇
  2007年   481篇
  2006年   402篇
  2005年   402篇
  2004年   374篇
  2003年   271篇
  2002年   242篇
  2001年   185篇
  2000年   138篇
  1999年   153篇
  1998年   156篇
  1997年   104篇
  1996年   78篇
  1995年   72篇
  1994年   73篇
  1993年   51篇
  1992年   44篇
  1991年   28篇
  1990年   23篇
  1989年   15篇
  1988年   9篇
  1987年   9篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1976年   2篇
排序方式: 共有8619条查询结果,搜索用时 46 毫秒
1.
Methanol crossover is one of the main challenges for direct methanol fuel cells (DMFCs). Depositing a metal barrier on Nafion can reduce the crossover but usually faces the metal cracking issues. This study presents a new composite membrane in which an anodic aluminum oxide (AAO) substrate is impregnated with a Nafion solution and then coated with a layer of Au. The AAO/Nafion/Au composite membrane shows an ideal metal crack-free surface. Higher and more stable voltage has been achieved for the cell with the membrane, indicating an effectively suppressed methanol-crossover. Results reveal that there is a tradeoff between suppressing the methanol crossover and increasing the ion transmission. By optimizing the membrane, it can not only suppress the methanol crossover but also enhance the output performance of DMFCs. The current density and power density of the cells can be enhanced by 59% and 52.85%, respectively, compared to the cell with a commercial Nafion 117. Overall, this work provides a new approach to designing crack-free membranes for DMFCs.  相似文献   
2.
Developing inexpensive and efficient electrocatalysts for hydrogen evolution reaction (HER) in both acidic and alkaline mediums is of great significance to the hydrogen energy industry. Hereby, we prepared a mixture of precursors with homogeneous composition by using the chelating ability of soybean protein isolate (C and N source) and phytic acid (dopant and phosphating agent) with cobalt ions, and achieved one-step synthesis and construction of Co2P/N–P co-doped porous carbon composite by carbonization at 800 °C. The as-synthesized Co2P/NPPC-800 electrocatalyst exhibits low HER overpotentials of 121 and 125 mV at 10 mA cm?2 in 0.5 M H2SO4 and 1.0 M KOH, which are close to those of the commercial Pt/C catalyst. Additionally, the NPPC substrate surrounding the Co2P could diminish the corrosion during the HER, and Co2P/NPPC-800 displays good stability and durability. Furthermore, this work offers a convenient synthesis strategy for phosphide/doped porous carbon composites in other electrochemical energy technologies.  相似文献   
3.
《Ceramics International》2022,48(6):7885-7896
Al2O3 and honeycomb skeleton-Al2O3 composite coatings on Titanium alloy (Ti–6Al–4V) were prepared by atmospheric plasma spraying. A laser ablation experiment on as-sprayed coatings was performed. In this paper, the laser damage resistance, microstructure, phase composition of Al2O3 coatings were examined. 3D Dimensional Confocal Microscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Energy Dispersive Spectrometry (EDS) characterized the laser damage morphology, microstructure, phase composition, and element analysis, respectively. The influence of the honeycomb skeleton on the laser ablation damage on as-sprayed coatings was investigated by a comparative analysis of the laser damage morphology with different laser ablation times and gas flow. The results show that the honeycomb skeleton raises thermal conductivity and thermal diffusivity. Moreover, a “tower”-like dendrite was generated during the laser irradiation of the composite coating. The honeycomb skeleton refined the structure, suppressed crack propagation, and reduced the influence of gas flow on cracks. Under the same experimental laser ablation parameters, the laser damage area of the honeycomb skeleton-Al2O3 composite coating was smaller than that of the Al2O3 coating. It was demonstrated that the laser damage resistance of the honeycomb skeleton-Al2O3 composite coating was superior to that of the Al2O3 coating.  相似文献   
4.
Fine-tuning of the scaffolds structural features for bone tissue engineering can be an efficient approach to regulate the specific response of the osteoblasts. Here, we loaded magnetic nanoparticles aka superparamagnetic iron oxide nanoparticles (SPIONs) into 3D composite scaffolds based on biological macromolecules (chitosan, collagen, hyaluronic acid) and calcium phosphates for potential applications in bone regeneration, using a biomimetic approach. We assessed the effects of organic (chitosan/collagen/hyaluronic acid) and inorganic (calcium phosphates, SPIONs) phase over the final features of the magnetic scaffolds (MS). Mechanical properties, magnetic susceptibility and biological fluids retention are strongly dependent on the final composition of MS and within the recommended range for application in bone regeneration. The MS architecture/pore size can be made bespoken through changes of the final organic/inorganic ratio. The scaffolds undertake mild degradation as the presence of inorganic components hinders the enzyme catalytic activity. In vitro studies indicated that osteoblasts (SaOS-2) on MS9 had similar cell behaviour activity in comparison with the TCP control. In vivo data showed an evident development of integration and resorption of the MS composites with low inflammation activity. Current findings suggest that the combination of SPIONs into 3D composite scaffolds can be a promising toolkit for bone regeneration.  相似文献   
5.
Silica-based ceramics have been explored extensively as a class of versatile materials for various applications in architecture, catalysis, energy, machinery, and biomedical engineering. Nevertheless, comprehensive information on silica-based ceramic and electromagnetic microwave (EMW) absorption is scarce, although excellent progress has been made in this field. Here, recent progress in the investigation of silica-based ceramics toward EMW absorption is reviewed. We first introduced the basis of ceramics (characteristics, classification, synthetic methods, potential applications). Subsequently, the silica-based ceramics, including Si-based oxides and alloys, SiOC/SiC/Si3N4/SiCN-based composite, Ti3SiC2 and composite for EMW absorption were systematically summarized. Notably, the fabrication strategies, absorption properties, and mechanisms of silica-based ceramics are described in detail, with a focus on structure and component design. Lastly, the prospects and ongoing challenges of this field in the future are presented. This review is expected to learn from the past and achieve progress toward the future of silica-based ceramic for EMW absorption.  相似文献   
6.
The wearable intelligent electronic product similar to electronic skin has a great application prospect. However, flexible electronic with high performance pressure sensing functions are still facing great challenges. In this paper, the highly sensitive flexible electronic skin (FES) based on the PVDF/rGO/BaTiO3 composite thin film was fabricated using the near-field electrohydrodynamic direct-writing (NFEDW) method. The PVDF/rGO/BaTiO3 composite solution was directly written on flexible substrate by the NFEDW method to fabricate FES with micro/nano fiber structure, which has the function of sensing pressure with high sensitivity and fast response. The surface morphology and microstructure were characterized by SEM, AFM, and optical microscope in detail. The fabricated FES has high sensitivity (59 kPa−1) and faster response time (130 ms). FES has been successfully applied to the detection of human motion and subtle physiological signals. The experimental results show that FES has good stability and reliability. FES can recognize human motion, and it has a broad application prospect in the field of wearable devices.  相似文献   
7.
Novel lead-free (1-x)Ba0·9Ca0·1Ti0·9Zr0·1O3-xSrNb2O6 ceramics were synthesized via a two-step high energy ball milling process. The evolution of microstructural properties, phase transformation, and energy storage characteristics was comprehensively investigated to assess the applicability of material in multi-layered ceramic capacitors. The substitution of SrNb2O6 (SNO) in Ba0·9Ca0·1Ti0·9Zr0·1O3 (BTCZ) has resulted in substantial improvement in materials density along with a small increase in the grain size of the synthesized ceramic. A thorough microstructural investigation indicates an excellent dispersibility and compatibility between BTCZ and SNO phases. With an increase in SNO substitution, a transition from typical ferroelectric to relaxor ferroelectric has been observed, which has led to a significantly slimmer ferroelectric loop along with frequency dispersive dielectric properties. The optimized composition (i.e., x = 0.10) exhibits an ultra-high recoverable energy density of 2.68 J/cm3 along with a moderately high energy efficiency of 83.4%. Further, SNO substituted samples have also shown an enhancement in breakdown strength. The improvement in energy storage performance and breakdown strength of SNO substituted BTCZ composites are mainly attributed to relatively homogeneous grain morphology, optimum grain size, microstructural density, and improved grain boundary interface.  相似文献   
8.
Energy optimization of second distillation tower of a pyrolysis gasoline hydrogenation unit has been studied by the thermal cycle of vapor recompression method. The mentioned cycle is connected to the second distillation tower of the stabilizer of pyrolysis gasoline, and the results are found promising. The composite pinch curve for both the current and the optimized methods are shown. Moreover, an increase in the heat transfer rate in heat exchanger E-1014 causes energy recovery in reboiler. According to simulation results, by vapor recompression to 1970 kPa and using this heat source for thermal integration, condenser and reboiler’s energies are decreased by 56.93 and 30.4 percentage, respectively.  相似文献   
9.
This work aims at developing a new composite material based on nanosized semiconducting CuInS2 (CIS) particles combined with silicon nanowires grown on a silicon substrate (SiNWs/Si) for photoelectrochemical (PEC)-splitting of water. The CIS particles were prepared via a colloidal method using N-methylimidazole (NMI) as the solvent and an annealing treatment. The SiNWs were obtained by chemical etching of silicon (100) substrates assisted by a metal. The CIS/SiNWs/Si composite material was obtained by deposition of an aliquot of a suspension of CIS particles onto the SiNWs/Si substrate, using spin coating followed by a drying step. The XRD pattern demonstrated that CuInS2 grows in the tetragonal/chalcopyrite phase, while SiNWs/Si presents a cubic structure. The SEM images show semi-spherical particles (~10 nm) distributed on the surface of silicon nanowires (~10 μm). The EIS measurements reveal n-type conductivity for CIS, SiNWs/Si and CIS/SiNWs/Si materials, which could favour the oxidation reaction of water molecules.  相似文献   
10.
The flower-shaped ZnO was synthesized to form composite with the delafossite structure CuFeO2. The composite heterojunction formed for the ZnO-CuFeO2 composite material demonstrates a profound significance for exploring novel materials in solid oxide fuel cell (SOFC) field. At 550 °C, power outputs of 300 mW cm?2 and 468 mW cm?2 were achieved for SOFC devices using pure ZnO and composite with CuFeO2 as the electrolytes, respectively. The composite showed a good performance at low temperatures, for instance, it showed a power output of 148 mW cm?2 at 430 °C. The studies on photocurrent-time curves with visible light on/off irradiation provided an evidence for electron-hole separation. The heterojunctions separate holes and electrons, preventing short-circuiting while used in the SOFC device. These results demonstrate that introducing the heterojunctions in the electrolyte is an innovative approach for advanced SOFCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号