首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4159篇
  免费   55篇
  国内免费   127篇
电工技术   42篇
综合类   67篇
化学工业   1340篇
金属工艺   331篇
机械仪表   78篇
建筑科学   83篇
矿业工程   19篇
能源动力   378篇
轻工业   163篇
水利工程   5篇
石油天然气   70篇
武器工业   3篇
无线电   263篇
一般工业技术   702篇
冶金工业   319篇
原子能技术   126篇
自动化技术   352篇
  2023年   52篇
  2022年   63篇
  2021年   87篇
  2020年   67篇
  2019年   64篇
  2018年   66篇
  2017年   99篇
  2016年   80篇
  2015年   69篇
  2014年   174篇
  2013年   320篇
  2012年   169篇
  2011年   346篇
  2010年   232篇
  2009年   293篇
  2008年   246篇
  2007年   250篇
  2006年   215篇
  2005年   208篇
  2004年   195篇
  2003年   196篇
  2002年   157篇
  2001年   85篇
  2000年   60篇
  1999年   76篇
  1998年   77篇
  1997年   55篇
  1996年   47篇
  1995年   49篇
  1994年   35篇
  1993年   26篇
  1992年   29篇
  1991年   24篇
  1990年   14篇
  1989年   23篇
  1988年   19篇
  1987年   13篇
  1986年   6篇
  1985年   8篇
  1984年   11篇
  1983年   3篇
  1982年   8篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1977年   5篇
  1976年   2篇
  1975年   5篇
  1961年   1篇
  1955年   1篇
排序方式: 共有4341条查询结果,搜索用时 201 毫秒
1.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
2.
Mass transfer in polycrystalline Yb2SiO5 wafers with precise composition control was evaluated and analyzed by oxygen permeation experiments at high temperatures using an oxygen tracer. Oxygen permeation proceeded due to mutual grain boundary diffusion of oxide ions and Yb ions without synergistic effects such as acceleration or suppression. The oxygen shielding properties of Yb2SiO5 were compared with those of the other line compounds such as Yb2Si2O7 and Al2O3 based on the determined mass transfer parameters. It was found that the more preferentially an oxide ion diffuses in the grain boundary compared to the interior of the grain, the greater the effect of suppressing the movement of the oxide ion by applying an oxygen potential gradient becomes.  相似文献   
3.
《Ceramics International》2022,48(10):13440-13451
If the entropy extrapolation of supercooled liquids (SCL) suggested by Kauzmann was correct, then they would have the same entropy as their stable crystalline phase at a certain low temperature, below the laboratory glass transition (Tg), known as the Kauzmann temperature (TK). Extrapolating even further, the liquid entropy would be null at a temperature above absolute zero, violating the Third Law of Thermodynamics and constituting a paradox. Several possibilities have been proposed over the past 70 years to solve this paradox with different degrees of success. Our objective here is to access liquid dynamics at deep supercoolings to test the so-called crystallization solution to the paradox. By comparing the relaxation and crystallization kinetics determined above Tg and extrapolated down to TK, a possible solution would be that the crystallization time is shorter than the relaxation time, which would mean that a SCL cannot reach the TK. In this case, the liquid stability limit or kinetic spinodal temperature (Tks) should be higher than TK. We tested two fragile glass-forming liquids (diopside and wollastonite) and two strong liquids (silica and germania). For the fragile substances, Tks ? TK, hence such a supercooled liquid cannot exist at TK, and the entropy crisis is averted. On the other hand, the results for the strong liquids were inconclusive. We hope the findings of this work encourage researchers to further investigate the liquid dynamics of different strong glass-forming systems at deep supercoolings.  相似文献   
4.
In this study, the effects of cell temperature and relative humidity on charge transport parameters are numerically analyzed. In order to perform this analysis, three-dimensional and anisotropic numerical models are developed. The numerical models are integrated into the experimental values for anisotropic electrical conductivities, as depending on cell temperature and relative humidity, that were obtained from our previous study. The achieved results indicate that the values of current densities in the in-plane direction increase with increasing cell temperature and relative humidity, while the current densities reach a maximum in the rib regions for both the numerical model at the through-plane direction. The behaviors of electrolyte potentials are similar with changes in the cell temperature and relative humidity. In addition, the cathode electrical potentials in both the in-plane direction and through-plane direction do not change to a considerable amount with increasing cell temperature and relative humidity.  相似文献   
5.
通过固液掺杂、等静压压制、中频烧结的方法,制备了不同的氧化镧、氧化钇、氧化锆三元掺杂成分比例的钨电极材料烧结棒材,探究了不同成分配比对样品显微组织、第二相粒子分布以及宏观力学性能的影响。结果表明,氧化镧、氧化钇、氧化锆三元复合添加能够有效改善第二相粒子在钨基体中的分布形态,降低第二相在晶界的过度富集,提高钨电极材料的综合力学性能。并且当添加成分镧、钇、锆质量比为3:1:1时,材料具有最好的综合力学性能,致密度可达96.04%,显微硬度可达549.37HV0.3,抗压强度可达3785MPa,原因是此配比下第二相粒子最为细小均匀,弥散程度最高,对基体晶粒的细化作用最好,该配比下钨基体平均晶粒尺寸达到10.3μm。  相似文献   
6.
The motion trajectory of hydrogen leakage is an essential safe issue for the application of hydrogen energy. A dimensionless fast-running motion trajectory prediction model is proposed to predict the dispersion characteristics of the buoyant jet of hydrogen leakage for the accident. The impact of different leakage angles, leakage velocity and thermal stratification of ambient air on hydrogen leakage behavior was analyzed. The new developed model was verified by experimental results in literatures. Leakage hydrogen can flow upwards freely in a uniform environment. However, it shows an oscillating trajectory at a certain height in a thermally stratified environment, which is so called “locking phenomenon”. The trajectory of hydrogen leakage is upward and hydrogen gathers at the top of the space to form stratification in a uniform environment, while the hydrogen leakage shows an oscillating trajectory at a certain height in a thermal stratification environment. With the increase of Froude number Fr, it shows that the stable height and maximum height of the leakage airflow have a trend of rising first and then falling in a thermally stratified environment. The findings are expected to give guidance in real-world situations, for example, a larger Fr value and a larger temperature gradient can lead to a decrease in the stable height in the thermally stratified environment. It is found that the fitting of the stable height with different temperature gradients satisfies the power function relationship. This work is expected to be helpful for reducing hydrogen leakage accumulation and explosion risk.  相似文献   
7.
A novel couple-based particle swarm optimization (CPSO) is presented in this paper, and applied to solve the short-term hydrothermal scheduling (STHS) problem. In CPSO, three improvements are proposed compared to the canonical particle swarm optimization, aimed at overcoming the premature convergence problem. Dynamic particle couples, a unique sub-group structure in maintaining population diversity, is adopted as the population topology, in which every two particles compose a particle couple randomly in each iteration. Based on this topology, an intersectional learning strategy using the partner learning information of last iteration is employed in every particle couple, which can automatically reveal useful history information and reduce the overly rapid evolution speed. Meanwhile, the coefficients of each particle in a particle couple are set as distinct so that the particle movement patterns can be described and controlled more precisely. In order to demonstrate the effectiveness of our proposed CPSO, the algorithm is firstly tested with four multimodal benchmark functions, and then applied to solve an engineering multimodal problem known as STHS, in which two typical test systems with four different cases are tested, and the results are compared with those of other evolutionary methods published in the literature.  相似文献   
8.
Digitalisation in mining refers to the use of computerised or digital devices or systems and digitised data that are to reduce costs, improve business productivity, and transform mining practices. However, it remains increasingly difficult for mining companies to decide which digital technologies are most relevant to their needs and individual mines. This paper provides an overview of digital technologies currently relevant to mining companies as presented and discussed by mining journals, the media and insight reports of leading consultancy agencies. Relevant technologies were systematically identified using text-mining techniques, and network analyses established the relations between significant technologies. Results demonstrated that currently 107 different digital technologies are pursued in the mining sector. Also, an analysis of the actual implementation of digital technologies in 158 active surface and underground mines reveals a limited uptake of digital technologies in general and that the uptake increases with the run-of-mine production. Large-scale mining operations appear to select and apply digital technologies suitable to their needs, whereas operations with lower production rates do not implement the currently available digital technologies to the same extent. These minor producers may require other digital transformation solutions tailored to their capabilities and needs and applicable to their scale of operations.  相似文献   
9.
Elongated β–Si3N4 crystals have a significant influence on the mechanical property of Fe–Si3N4 composite. In this paper, the formation mechanism of elongated β–Si3N4 crystals in Fe–Si3N4 composite was investigated. During the preparation process, β–Si3N4 crystals developed in a spiral and layer growth mechanism in the dense areas. They kept growing from the dense areas and formed radially distributed elongated crystals with hexagonal prismatic morphology as time went on. As for the formation mechanism, the (100) crystal plane of β–Si3N4 from Si-N-O melt is mainly the vicinal crystal planes growth with different angles from the (100) crystal plane. At the later stage, the crystallization and the diffusion forces in Si-N-O molten phase decreased. However, the short range diffusion remained active and resulted in the gradient distribution of N content near the boundary. With the temperature decreasing, the disappearance of the short range diffusion implied the end of the crystallization process of the elongated β–Si3N4 crystals.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号