首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9799篇
  免费   877篇
  国内免费   708篇
电工技术   233篇
综合类   915篇
化学工业   1466篇
金属工艺   908篇
机械仪表   705篇
建筑科学   1681篇
矿业工程   260篇
能源动力   180篇
轻工业   403篇
水利工程   424篇
石油天然气   631篇
武器工业   67篇
无线电   557篇
一般工业技术   2089篇
冶金工业   310篇
原子能技术   103篇
自动化技术   452篇
  2024年   10篇
  2023年   150篇
  2022年   213篇
  2021年   279篇
  2020年   294篇
  2019年   281篇
  2018年   285篇
  2017年   348篇
  2016年   317篇
  2015年   328篇
  2014年   510篇
  2013年   576篇
  2012年   603篇
  2011年   809篇
  2010年   511篇
  2009年   577篇
  2008年   589篇
  2007年   653篇
  2006年   590篇
  2005年   502篇
  2004年   434篇
  2003年   423篇
  2002年   356篇
  2001年   263篇
  2000年   232篇
  1999年   187篇
  1998年   187篇
  1997年   140篇
  1996年   141篇
  1995年   121篇
  1994年   90篇
  1993年   54篇
  1992年   72篇
  1991年   65篇
  1990年   41篇
  1989年   41篇
  1988年   32篇
  1987年   19篇
  1986年   11篇
  1985年   14篇
  1984年   6篇
  1983年   9篇
  1982年   8篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
2.
《Ceramics International》2021,47(21):29722-29729
As semiconductor devices have become miniaturized and highly integrated, interconnection problems such as RC delays, power dissipation, and crosstalk appear. To alleviate these problems, materials with a low dielectric constant should be used for the interlayer dielectric in nanoscale semiconductor devices. Silica aerogel as a porous structure composed of silica and air can be used as the interlayer dielectric material to achieve a very low dielectric constant. However, the problem of its low stiffness needs to be resolved for the endurance required in planarization. The purpose of this study is to discover the geometric effect of the electrical and mechanical properties of silica aerogel. The effects of porosity, the distribution of pores, the number of pores on the dielectric constant, and elastic modulus were analyzed using FEM. The results suggest that the porosity of silica aerogel is the main parameter that determines the dielectric constant and it should be at least 0.76 to have a very low dielectric constant of 1.5. Additionally, while maintaining the porosity of 0.76, the silica aerogel needs to be designed in an ordered open pores structure (OOPS) containing 64 or more pores positioned in a simple cubic lattice point to endure in planarization, which requires an elastic modulus of 8 GPa to prevent delamination.  相似文献   
3.
研究辊速差对连铸连轧7075铝板显微组织、织构及力学性能的影响。采用3种不同上辊/下辊转速比(ω/ω0,ω为上辊转速,ω0为下辊转速)1:1、1:1.2及1:1.4进行多次试验。结果显示,在最大辊速差条件下(ω/ω0=1:1.4),7075铝板在轧制方向的屈服强度和极限抗拉强度分别提高41.5%和21.9%。此外,当辊速比ω/ω0为1:1.4时,成品轧制板的平均晶粒尺寸减小36%,横剖面平均硬度增加约9.2%。织构研究结果显示,辊速差越大,成品各向同性及硬度越大。然而,采用不同辊速度的连铸连轧会导致变形板伸长率降低约6%。  相似文献   
4.
Isotropic and anisotropic shape-memory polymer foams are prepared by supercritical carbon dioxide foaming from a multiblock copolymer (PDLCL) consisting of poly(ω-pentadecalactone) and poly(ε-caprolactone) segments. Analysis by micro-computed tomography reveals for the anisotropic PDLCL foam cells a high shape anisotropy ratio of R = 1.72 ± 0.62 with a corresponding Young's compression moduli ratio between longitudinal and transversal direction of 4.3. The experimental compression data in the linear elastic range can be well described by the anisotropic open foam model of Gibson and Ashby. A micro-morphological analysis for single pores using scanning electron microscopy images permits the correlation between the macroscopic stress-compression behavior and microscale structural changes.  相似文献   
5.
为探究挠性筋结构单晶硅材料的各向异性特性以及KOH腐蚀工艺对其力学性能的影响规律,进行纳米压痕实验,并结合原子力显微镜观察单晶硅表层3个主晶面上压痕裂纹形貌随晶向的变化规律,分析单晶硅材料表层弹性模量、硬度、断裂韧性等机械力学特性参数在(001)、(110)及(111)3个主要晶面上沿各个晶向的变化规律;分析挠性筋结构单晶硅材料(001)晶面的KOH腐蚀工艺对其材料表面机械特性的影响规律.结果表明:挠性筋单晶硅在(001)晶面上弹性模量的各向异性变化幅度明显,硬度及断裂韧性各向异性的变化幅度不大;挠性筋单晶硅在(110)晶面弹性模量和断裂韧性的各向异性变化幅度明显,硬度各向异性变化幅度不大;挠性筋单晶硅在(111)晶面硬度值、弹性模量及断裂韧性参数的变化幅度幅值均较小;确定了单晶硅表层3个晶面裂纹最易扩展的晶向方向,KOH腐蚀工艺使得单晶硅表面质量降低,腐蚀后暴露的表面微裂纹、缺陷等会使得单晶硅(001)晶面表层硬度、断裂韧性降低,从而降低了挠性筋结构的实际断裂强度.  相似文献   
6.
Hydrogen-absorbing magnetic alloy films, such as palladium-cobalt (PdCo) alloy films, are expected to play a significant role in the next generation of hydrogen sensors. However, effects of hydrogenation on such films are very complex, since these alloys show strong spin-orbit interaction, i.e., strong magnetoelastic coupling. Accordingly, we conducted integrated research on the hydrogenation, magnetoelastic coupling, magnetism, and galvanomagnetic effect of PdCo alloy films having different magnetic anisotropies of longitudinal and perpendicular magnetic anisotropies. As a result, it was revealed that the stress in the film determines its magnetic anisotropy. The magnetoresistance curves of films, consisting of ordinal and anisotropic magnetoresistance effects, correspond well to the magnetization-magnetic field curves. Hydrogenation results in the compressive stress and decreased magnetostriction, which both have a negative influence on the perpendicular magnetic anisotropy energy of the films. Moreover, the influence is observed also in ordinal and anisotropic magnetoresistances. In addition, the increases in coercivity and electronic resistivity due to the incorporated hydrogen atoms (and related defects) are detected. The results are summarized in a correlation diagram, which shows that hydrogen-absorbing magnetic alloy films are very suitable for use in hydrogen sensors—the films can detect hydrogen via various methods such as magnetic anisotropy, galvanomagnetic effect, coercivity, and resistivity.  相似文献   
7.
This paper reports the thermal, morphological and mechanical properties of environmentally friendly poly(3-hydroxybutyrate) (PHB)/poly(butylene succinate) (PBS) and PHB/poly[(butylene succinate)-co-(butylene adipate)] (PBSA) blends, prepared by melt mixing. The blends are known to be immiscible, as also confirmed by the thermodynamic analysis here presented. A detailed quantification of the crystalline and amorphous fractions was performed, in order to interpret the mechanical properties of the blends. As expected, the ductility increased with increasing PBS or PBSA amount, but in parallel the decrease in the elastic modulus appeared limited. Surprisingly, the elastic modulus was found properly described by the rule of mixtures in the whole composition range, thus attesting mechanical compatibility between the two blend components. This unusual behavior has been explained as due to co-continuous morphology, present in a wide composition range, but also at the same time as the result of shrinkage occurring during sequential crystallization of the two components, which can lead to physical adhesion between matrix and dispersed phase. For the first time, the elastic moduli of the crystalline and mobile amorphous fractions of PBS and PBSA and of the mobile amorphous fraction of PHB at ambient temperature have been estimated through a mechanical modelling approach. © 2021 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   
8.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   
9.
The features of crystal structures, thermo-mechanical properties and their dominant mechanisms of weberites RE3NbO7 were studied as high-temperature oxides. We concentrated on connections between structures and thermo-mechanical properties, the influences of bond lengths, lattice distortion degrees and microstructures on these properties were estimated. The shortening of bond length and increment of bonding strength would lead to the increase of mechanical properties. The Vickers hardness (4.5-7.8 GPa) and toughness (0.5-1.6 MPa·m1/2) of weberites RE3NbO7 are enhanced by grain refinement and increment of bond strength, while crystal structures, bond lengths, and lattice distortion degrees influenced their Young's modulus (100-170 GPa). Nano-indentation was applied to test the influence of microstructures on modulus and hardness. The dominant mechanisms for mechanical properties and thermal conductivity were proposed, which was conducive to properties tailoring and engineering applications of weberites RE3NbO7 oxides.  相似文献   
10.
常规各向同性逆时偏移方法在处理各向异性问题时会导致层位成像不准确、同相轴能量不聚焦等问题,并且利用拉普拉斯滤波算子等简单滤波方法不能彻底去除成像结果中的强振幅低频噪声。针对这些问题,首先应用声波近似方程模拟qP波在各向异性VTI介质中的传播,在震源激发位置设定平滑的各向同性或椭圆各向异性震源环以压制qSV波的影响;在此基础上提出了VTI介质逆时偏移的角度叠加实现策略,利用角度域共成像点道集中不同角度成像结果的叠加压制低频噪声,提高成像精度。模型试算和应用实例偏移结果表明,该方法能够对高陡复杂构造准确成像,且能量均衡、低频噪声压制效果较好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号