首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8412篇
  免费   1113篇
  国内免费   388篇
电工技术   181篇
综合类   317篇
化学工业   563篇
金属工艺   3306篇
机械仪表   1909篇
建筑科学   357篇
矿业工程   147篇
能源动力   193篇
轻工业   109篇
水利工程   24篇
石油天然气   547篇
武器工业   75篇
无线电   132篇
一般工业技术   1400篇
冶金工业   390篇
原子能技术   61篇
自动化技术   202篇
  2024年   7篇
  2023年   107篇
  2022年   156篇
  2021年   205篇
  2020年   266篇
  2019年   253篇
  2018年   310篇
  2017年   345篇
  2016年   334篇
  2015年   390篇
  2014年   507篇
  2013年   860篇
  2012年   441篇
  2011年   611篇
  2010年   448篇
  2009年   528篇
  2008年   462篇
  2007年   518篇
  2006年   557篇
  2005年   381篇
  2004年   373篇
  2003年   353篇
  2002年   271篇
  2001年   269篇
  2000年   184篇
  1999年   182篇
  1998年   134篇
  1997年   109篇
  1996年   94篇
  1995年   65篇
  1994年   49篇
  1993年   30篇
  1992年   41篇
  1991年   18篇
  1990年   16篇
  1989年   10篇
  1988年   13篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   5篇
  1980年   2篇
排序方式: 共有9913条查询结果,搜索用时 15 毫秒
1.
《Soils and Foundations》2022,62(1):101089
In recent years, the mechanical properties of frozen soils under complex stress states have attracted significant attention; however, limited by the test apparatus, true triaxial tests on frozen soils have rarely been conducted. To study the strength and deformation properties of frozen sand under a true triaxial stress state, a novel frozen soil testing system, i.e., a true triaxial apparatus, was developed. The apparatus is mainly composed of a temperature control system, a servo host system, a hydraulic servo loading system, and a digital control system. Several true triaxial tests were conducted at a constant minor principal stress (σ3) and constant intermediate principal stress ratio (b) to study the effect of intermediate principal stress (σ2) on the mechanical properties of frozen sand. The test results showed that the stress–strain curve can be mainly divided into three stages, with evidence of strain hardening characteristics. The strength, elastic modulus, and friction angle increased with the increase in b from 0 to 0.6, but decreased when increasing b from 0.6 to 1, whereas the cohesion varied little with the variation in b. The deformation in the direction of σ2 changed from dilative to compressive and that in the direction of σ3 remained dilative throughout.  相似文献   
2.
《Ceramics International》2022,48(4):4710-4721
In this study, AA5083 sheets were reinforced with four different hybrid nanoparticles by friction stir processing (FSP) for the development of surface nanocomposites used in advanced engineering applications. The present research focused on improving the properties and tribological behaviour of AA5083 alloy surfaces, including novel hybrid nanoparticles and the intermetallic phase formed during FSP. A tribometer tester with a constant normal load was used to examine the tribological performance of the hybrid composites. After the wear test, a surface profiler inspector was used to analyse the morphology and surface roughness of the examined materials. The Vickers micro-hardness of the base metal and the manufactured composites were measured. During FSP, a new intermetallic phase of AlV3 was successfully formed at 300–400 °C in the hybrid nanocomposites containing VC particles. The reinforcements resulted in additional grain refining than FSP. The AA5083/Ta2C–Al2O3 exhibited the greatest grain refinement, a sixty-fold reduction in grain size compared to that of the base alloy. The results revealed that the hybrid nanocomposites containing VC particles demonstrated the most significant microhardness values inside the stirred zone as a result of the presence of the AlV3 phase, which was increased by 25–30%. Moreover, the mechanical properties were significantly improved for all manufactured nanocomposites. The tensile strength was increased by 28% through the hybridisation of AA5083 using a hybrid of VC-GNPs. The dispersion of Ta2C-GNPs and VC-GNPs in the matrix led to excellent interfacial adhesion, resulting in an enhancement in the mechanical properties. The AA5083/VC-GNPs surface composite outperformed other manufactured composites regarding wear resistance. In addition, due to GNPs soft nature, it reduced the coefficient of friction (COF) of the manufactured composites by 20–25% compared to other reinforcements.  相似文献   
3.
Halide perovskite glass-ceramic has recently moved into the center of the attention of perovskite research due to their potential for temperature sensing. However, quantum dots glass-ceramic with excellent luminescence performance still needs to be combined with rare-earth (RE) ions to accurately measure temperature. In this work, a novel non-RE doped dual-emission (460 nm and 512 nm) CsPbBr3 quantum dots was obtained in telluride glass via the friction crystallization method, where 512 nm was derived from intrinsic luminescence of quantum dots, and 460 nm was originated from thermally induced bromine vacancy, which can be used for temperature sensing. Fluorescence intensity ratio results indicate that the relative sensitivity of dual-emission could reach 5.6 % K?1 at 323 K. The discovery of non-RE doped CsPbBr3 QDs glass-ceramic with negative thermal quenching uncovers a new optional sensing glass material that surpass traditional RE-doped QDs glass by their tunability and sensitivity.  相似文献   
4.
某电力公司变电站用铝合金设备线夹在运行过程发生批次开裂事故,通过宏观观察、断口分析、化学成分分析、力学性能测试、冷冻模拟试验等方法,对设备线夹的开裂原因和开裂机理进行了分析。结果表明:设备线夹焊缝存在焊接缺陷,导致焊缝强度下降;设备线夹接线管底部存在积水空间,寒冷天气下积水结冰,体积膨胀,使焊缝承受设计工况外的负载而过载开裂,造成了线夹开裂。  相似文献   
5.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
6.
《Ceramics International》2022,48(20):30052-30065
The present work is attempted to improve the microhardness and wear properties of AISI 1020 steel by depositing TiB2–Fe composite coating using tungsten inert gas (TIG) cladding. In this study, different compositions of TiB2–Fe paste form were preplaced on the substrate plates and then TIG heat input was applied to deposit hard composite coating layer. The main objective of the present work was to explore the influence of TIG input current as well as iron content on the microstructure and surface properties of deposited coatings. Microhardness, microstructural and phase characterization of the coating have been done by the Vickers microhardness tester, scanning electron microscope (SEM), Energy dispersive spectroscopy (EDS) and X-ray diffractrometer (XRD). The results showed that the microhardness of the TiB2–Fe coating was strongly influenced by the composition of the coating materials as well as the TIG processing current. The microhardness increases with decreasing Fe contents in the coating materials with constant processing current (90 A) as well as it also increases with decreasing processing current with the fixed composition of coating materials (80TiB2–20Fe). The maximum average microhardness found was 3082 HV0.1 for the coating of 100TiB2–0Fe composition ratio and 90 A processing current which was about 18 times higher than that of the substrate average microhardness value (163 HV0.1). Average wear rate evaluated by considering weight loss of the TIG cladded samples using pin on disc tribometer by the sliding distance of 864 m and 20 N normal loads. The wear results also showed that the coating contains 100 wt% of TiB2 (0 wt% of Fe) exhibited lower rate of wear 6.74 × 10?8 g/Nm which is about 24 times lower as compared to AISI 1020 mild steel wear rate (166.31 × 10?8 g/Nm).  相似文献   
7.
An integrated model of ultrasonic vibration enhanced friction stir welding (UVeFSW) is developed by integrating the thermal-fluid model with the ultrasonic field model and tool torque model. The tool torque and the heat generation rate at tool/workpiece contact interfaces are coupled with the interfacial temperature, strain rate and ultrasonic energy density. The model is used in quantitatively analysing the effects of ultrasonic vibration on tool torque and thermal processes in friction stir welding (FSW). The results show that ultrasonic vibration reduces the flow stress, which results in a decreasing of tool torque, interfacial heat generation rate and interfacial temperature. The complicated interaction of ultrasonic energy with the thermal processes in FSW leads to a gentle thermal gradient and an enhanced plastic material flow in UVeFSW. The model is validated by a comparison of the calculated thermal cycles and tool torque at various welding parameters with the experimentally measured ones.  相似文献   
8.
The longitudinal residual stresses in the friction stir-welded plates of 5A06 aluminium and pure copper were determined using the contour method. The results revealed the presence of high tensile and compressive residual stresses on the aluminium and copper sides, respectively. The residual stresses were detected on the weld zone as well as the thermo-mechanically affected zone (TMAZ) of the aluminium plate. In contrast, the compressive residual stresses in the copper plate had a much narrower width along the weld line. Peak tensile stresses up to 240?MPa were found in the TMAZ of the aluminium plate.  相似文献   
9.
Full aperture continuous polishing using pitch lap is a key process of finishing large flat optical workpiece. The friction force of the workpiece and pitch lap interface significantly affects material removal. In this work, the friction force was determined by a measurement system that uses force transducers to support the workpiece. Experimental and theoretical analyses have been carried out to investigate the evolution of friction force with polishing time and its effect on material removal. Our results show that the friction coefficient of the workpiece/lap interface decreases during polishing, which is due to surface smoothing of the viscoelastic pitch lap by loading conditioner. In addition, the spatial average and uniformity of material removal rate (removal coefficient) increases with the increase of friction coefficient, which is due to rough lap surface, provides more sharp asperities to charge the polishing particles.  相似文献   
10.
In order to improve the process effectiveness and joint quality, ultrasonic vibrations were integrated with friction stir lap welding. Effect of ultrasonic exertion on the process and joint quality of AA 6061-T6 were investigated. Upon ultrasonic exertion, joints owned larger effective lap width, shorter hooks and improved strength. Weld fracture mode changed from a ductile–brittle mixed mode to a more ductile mode while the fracture path shifted from lap interface to beyond the stir zone. Material flow and interface defects were characterised using lap welded dissimilar aluminium alloy joints. Ultrasonic vibration improved the material flow and reduced the interfacial defects. Variations in failure load of joints were found in accordance with the variations in material flow and interfacial defects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号