首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58740篇
  免费   4833篇
  国内免费   5075篇
电工技术   1466篇
综合类   3688篇
化学工业   5381篇
金属工艺   25689篇
机械仪表   3244篇
建筑科学   2105篇
矿业工程   1468篇
能源动力   1912篇
轻工业   772篇
水利工程   293篇
石油天然气   1812篇
武器工业   872篇
无线电   1933篇
一般工业技术   9583篇
冶金工业   5757篇
原子能技术   462篇
自动化技术   2211篇
  2024年   110篇
  2023年   889篇
  2022年   1529篇
  2021年   1825篇
  2020年   1950篇
  2019年   1562篇
  2018年   1561篇
  2017年   2044篇
  2016年   1785篇
  2015年   1923篇
  2014年   2953篇
  2013年   3005篇
  2012年   3480篇
  2011年   4375篇
  2010年   3313篇
  2009年   3605篇
  2008年   2995篇
  2007年   4156篇
  2006年   3995篇
  2005年   3228篇
  2004年   2867篇
  2003年   2542篇
  2002年   2000篇
  2001年   1888篇
  2000年   1540篇
  1999年   1388篇
  1998年   1065篇
  1997年   981篇
  1996年   908篇
  1995年   680篇
  1994年   589篇
  1993年   427篇
  1992年   395篇
  1991年   275篇
  1990年   233篇
  1989年   208篇
  1988年   125篇
  1987年   52篇
  1986年   33篇
  1985年   14篇
  1984年   27篇
  1983年   18篇
  1982年   27篇
  1981年   26篇
  1980年   9篇
  1979年   5篇
  1978年   12篇
  1976年   10篇
  1975年   5篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
1.
Bimetallic catalysts have been investigated as the most efficient materials to accelerate the chemical transformations at the anode in Direct Ethanol Fuel Cells. A comparative study is presented here to synthesize Ni–Cu bimetallic nanoparticles for the ethanol oxidation reaction on three conducting polymers: poly-ortho-phenylenediamine, poly-meta-phenylenediamine, and poly-para-phenylenediamine. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Electrochemical Impedance Spectroscopy (EIS) were used to analyze the modified electrodes. A series of bimetallic Ni–Cu nanoparticles with tunable ratios were successfully synthesized by simply changing the concentrations of Nickel and Copper. It has been confirmed that the best Ni/Cu molar ratio was 25% in the aspect of catalytic performance. The electrocatalyst exhibited an excellent catalytic activity with an anodic current of 70.5 mA cm?2 at the lowest onset potential of 0.39 V with impressive stability. Ni4Cu1/PpPD should be considered as a good alternative to noble metal anode catalyst.  相似文献   
2.
To improve the safety of wet dust removal systems for processing magnesium-based alloys, a new method is proposed for preventing hydrogen generation. In this paper, hydrogen generation by Mg–Zn alloy dust was inhibited with six common metal corrosion inhibitors. The results showed that sodium dodecylbenzene sulfonate was the best hydrogen inhibitor, while CeCl3 enhanced hydrogen precipitation. The film-forming stability of sodium dodecylbenzene sulfonate was tested with different contents, temperatures, Cl? concentrations and perturbation rates. The results showed that this inhibitor formed stable protective films on the surfaces of Mg–Zn alloy particles, and adsorption followed the Langmuir adsorption model.  相似文献   
3.
Ammonia is considered as a promising hydrogen or energy carrier. Ammonia absorption or adsorption is an important aspect for both ammonia removal, storage and separation applications. To these ends, a wide range of solid and liquid sorbents have been investigated. Among these, the deep eutectic solvent (DES) is emerging as a promising class of ammonia absorbers. Herein, we report a novel type of DES, i.e., metal-containing DESs for ammonia absorption. Specifically, the NH3 absorption capacity is enhanced by ca. 18.1–36.9% when a small amount of metal chlorides, such as MgCl2, MnCl2 etc., are added into a DES composed of resorcinol (Res) and ethylene glycol (EG). To our knowledge, the MgCl2/Res/EG (0.1:1:2) DES outperforms most of the reported DESs. The excellent NH3 absorption performances of metal–containing DESs have been attributed to the synergy of Lewis acid–base and hydrogen bonding interactions. Additionally, good reversibility and high NH3/CO2 selectivity are achieved over the MgCl2/Res/EG (0.1:1:2) DES, which enables it to be a potential NH3 absorber for further investigations.  相似文献   
4.
Aluminum alloy bipolar plates have unique application potential in proton exchange membrane fuel cell (PEMFC) due to the characteristics of lightweight and low cost. However, extreme susceptibility to corrosion in PEMFC operation condition limits the application. To promote the corrosion resistance of aluminum alloy bipolar plates, a Ni–P/TiNO coating was prepared by electroless plating and closed field unbalanced magnetron sputter ion plating (CFUMSIP) technology on the 6061 Al substrate. The research results show that Ni–P interlayer improves the deposition effect of TiNO outer layer and increase the content of TiN and TiOxNy phases. Compared to Ni–P and TiNO single-layer coatings, the Ni–P/TiNO coating samples exhibited the lowest current density value of (1.10 ± 0.02) × 10?6 A·cm?2 in simulated PEMFC cathode environment. Additionally, potential cyclic polarization measurements were carried out aiming to evaluate the durability of the aluminum alloy bipolar plate during the PEMFC start-up/shut-up process. The results illustrate that the Ni–P/TiNO coating samples exhibit excellent stability and corrosion resistance.  相似文献   
5.
Non-noble metal catalyst with high catalytic activity and stability towards oxygen reduction reaction (ORR) is critical for durable bioelectricity generation in air-cathode microbial fuel cells (MFCs). Herein, nitrogen-doped (iron-cobalt alloy)/cobalt/cobalt phosphide/partly-graphitized carbon ((FeCo)/Co/Co2P/NPGC) catalysts are prepared by using cornstalks via a facile method. Carbonization temperature exerts a great effect on catalyst structure and ORR activity. FeCo alloys are in-situ formed in the catalysts above 900 °C, which are considered as the highly-active component in catalyzing ORR. AC-MFC with FeCo/Co/Co2P/NPGC (950 °C) cathode shows the highest power density of 997.74 ± 5 mW m?2, which only declines 8.65% after 90 d operation. The highest Coulombic efficiency (23.3%) and the lowest charge transfer resistance (22.89 Ω) are obtained by FeCo/Co/Co2P/NPGC (950 °C) cathode, indicating that it has a high bio-electrons recycling rate. Highly porous structure (539.50 m2 g?1) can provide the interconnected channels to facilitate the transport of O2. FeCo alloys promote charge transfer and catalytic decomposition of H2O2 to ?OH and ?O2?, which inhibits cathodic biofilm growth to improve ORR durability. Synergies between metallic components (FeCo/Co/Co2P) and N-doped carbon energetically improve the ORR catalytic activity of (FeCo)/Co/Co2P/NPGC catalysts, which have the potential to be widely used as catalysts in MFCs.  相似文献   
6.
Nickel-based catalysts have attracted tremendous attention as alternatives to precious metal-based catalysts for electrocatalytic hydrogen evolution reaction (HER) in virtue of their conspicuous advantages such as abundant reserves and high electrochemical activity. Nevertheless, a great challenge for Ni-based electrocatalyst is that nickel sites possess too strong adsorption for key intermediates H1, which severely suppresses the hydrogen-production activities. Herein, we report a hierarchical architecture Cu/Ni/Ni(OH)2 consisting of dual interfaces as a high-efficient electrocatalyst for HER. The Cu nanowire backbone could provide geometric spaces for loading plenty of Ni sites and the formed Ni/Cu interface could effectively weakened the adsorption intensity of H1 intermediates on the catalyst surface. Moreover, the H1 adsorption could be further controlled to appropriate states by in-situ formed Ni(OH)2/Ni interface, which simultaneously promotes water adsorption and activation, thus both Heyrovsky and Volmer steps in HER could be obviously accelerated. Experimental and theoretical results confirm that this interface structure can promote water dissociation and optimize H1 adsorption. Consequently, the Cu/Ni/Ni(OH)2 electrocatalyst exhibits a low overpotential of 20 mV at 10 mA cm?2 and an ultralow Tafel slope of 30 mV dec?1 in 1.0 M KOH, surpassing those of reported transition-metal-based electrocatalysts and even the prevailing commercial Pt/C.  相似文献   
7.
Metal/carbon composite materials are highly promising electrocatalysts for water electrolysis. In this work, three composites of metal cobalt nanoparticles highly dispersed in N-doped carbon materials were facilely constructed by pyrolysis of different phenylenediamine based Schiff base-Co complexes (PDBs). Interestingly, the composites derived from PDBs based on different phenylenediamine exhibited different morphologies. The superior case is that rodlike composite catalyst was derived from o-phenylenediamine based PDBs. The obtained catalyst exhibited remarkable performances for both cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER), as well as overall water electrolysis. Only 172 and 289 mV of overpotentials and 1.57 V of cell voltage were exhibited at 10 mA cm?2 for HER, OER and water splitting in 1.0 M KOH, respectively. The catalyst also displayed robust stability and high Faraday efficiency, and thus are potential high-performance catalyst for commercial water electrolysis.  相似文献   
8.
A class of ruthenium-nickel alloy catalysts featured with nanoporous nanowires (NPNWs) were synthesized by a strategy combining rapid solidification with two-step dealloying. RuNi NPNWs exhibit excellent electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in which the RuNi-2500 NPNWs catalyst shows an OER overpotential of 327 mV to deliver a current density of 10 mA cm?2 and the RuNi-0 NPNWs catalyst requires the overpotential of 69 mV at 10 mA cm?2 showing the best HER activity in alkaline media. Moreover, the RuNi-1500 NPNWs catalyst was used as the bifunctional electrocatalyst in a two-electrode alkaline electrolyzer for water splitting, which exhibits a low cell voltage of 1.553 V and a long-term stability of 24 h at 10 mA cm?2, demonstrating that the RuNi NPNWs catalysts can be considered as promising bifunctional alkaline electrocatalysts.  相似文献   
9.
以漳州市某超高层项目为例,针对超高层密集布筋区埋入式型钢柱脚与钢筋的深化设计、地脚螺栓的定位预埋、型钢柱脚支撑体系设计、节点钢筋穿插连接施工、埋入式型钢柱脚安装等方面,提出切实可行的施工方法,解决了埋入式型钢混凝土柱脚的地脚螺栓精准预埋、与底板密集钢筋穿插连接施工、悬空支撑稳定等一系列施工技术难题,既满足了设计方案的要求,又可为类似工程提供借鉴。  相似文献   
10.
Partial gasification of coal char was conducted with addition of metal oxides for co-production of fuel gas and methane decomposition catalysts. Effect of the metal composition (Ni, Co and Fe based mono- or bi-metals) was investigated on the fuel gas production and the resultant catalyst surface and textural properties, morphology and performance in catalytic methane decomposition (CMD). Besides H2-rich fuel gas production (the combustion energy up to 11.03–23.42 MJ/kgchar) from the gasification, the gasification residue can directly serve as the effective and efficient catalyst for CMD. The Fe and Fe–Co composite oxides were found to be better among the mono- and bi-metallic oxides for the fuel gas production during the gasification, respectively. The Ni-based mono-/bi-metallic catalysts could display high and stable methane conversion (up to 80%) during the 600-min CMD test at 850 °C. Promotional role of the second metal in CMD was discussed on the carbon diffusion, metal mobility and reducibility, formation and growth of the deposited carbons. The formed carbon morphology after CMD was analyzed based on the Kirkendall effect and Tammann temperature and further correlated to the potential catalyst deactivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号