首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1825篇
  免费   29篇
  国内免费   54篇
电工技术   26篇
综合类   34篇
化学工业   846篇
金属工艺   72篇
机械仪表   10篇
建筑科学   15篇
矿业工程   40篇
能源动力   282篇
轻工业   33篇
水利工程   2篇
石油天然气   19篇
无线电   50篇
一般工业技术   405篇
冶金工业   46篇
原子能技术   6篇
自动化技术   22篇
  2024年   2篇
  2023年   34篇
  2022年   88篇
  2021年   80篇
  2020年   86篇
  2019年   70篇
  2018年   85篇
  2017年   89篇
  2016年   80篇
  2015年   49篇
  2014年   110篇
  2013年   85篇
  2012年   88篇
  2011年   209篇
  2010年   123篇
  2009年   130篇
  2008年   103篇
  2007年   107篇
  2006年   60篇
  2005年   40篇
  2004年   40篇
  2003年   34篇
  2002年   23篇
  2001年   8篇
  2000年   12篇
  1999年   19篇
  1998年   8篇
  1997年   8篇
  1996年   6篇
  1995年   10篇
  1994年   6篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
排序方式: 共有1908条查询结果,搜索用时 24 毫秒
1.
《Ceramics International》2022,48(15):21317-21326
1T phase molybdenum disulfide (1T-MoS2) has aroused extensive concern in energy storage devices such as supercapacitors due to its large interlayer spacing, high conductivity and good hydrophilicity. However, it is struggle to synthesize 1T-MoS2 with stable 1T phase with high content. Herein, Ammonium ion intercalation molybdenum disulfide (A-MoS2) with high 1T content and stable 3D microsphere structure was successfully synthesized using a facile hydrothermal method. We explained the feasibility of ammonium ion (NH4+) intercalation through density functional theory (DFT) calculations and proved the successful intercalation of NH4+ by XRD and XPS. Through XPS fitting, the 1T phase content is calculated as high as 83.1%. The as-prepared A-MoS2 presents a stable 3D microsphere structure with the interlayer spacing expanded to 0.93 nm, which provides a wide ion diffusion channel that allows ions to pass through quickly. Moreover, the high 1T content increases the hydrophilicity of MoS2, thereby improving the wettability of the electrode, which contributes to the interaction between the electrolyte and electrode. In 1 M Na2SO4, A-MoS2 electrode material displays high specific capacitance of 228 F g?1 at 5 mV s?1 and retains 127 F g?1 at 80 mV s?1, which proves the good rate capability. Furthermore, the assembled α-MnO2//A-MoS2 asymmetric supercapacitor (ASC) displayed a wide operating voltage of 2.1 V. The assembled ASC displays a high energy density of 35.8 Wh?kg?1 at a power density of 525.0 W kg?1, which indicates excellent energy storage performance.  相似文献   
2.
《Ceramics International》2022,48(9):11988-11997
We have studied peculiarities in the formation of single-crystalline barium titanate (BaTiO3) nanorods from a glycolate-mediated complex via a single-step hydrothermal process under different supersaturation (SR) conditions. X-ray diffraction (XRD) showed the formation of pure BaTiO3 with an SR of above 19. The tetragonality for the BaTiO3 (c/a) reached 1.013 at SR = 19–29 and dropped to 1.010 for SR = 39. According to the transmission electron microscopy (TEM) and XRD analyses, the rod-shaped particles exhibited single crystallinity and crystal growth along the [001] plane. With scanning electron microscopy (SEM), the morphological evolution from a plate-shaped intermediate precursor (SR = 6–9) to a rod-shaped product with an aspect ratio of 6–9 (SR = 19–29), and to non-polar material with an irregular structure (SR = 39), was observed. The negative slope, linear dependence of the particles’ width and length on the supersaturation level in the range SR = 19–39 was established for the first time. The replacement of the prevailing crystallization mechanism from in-situ topotactic transformation into dissolution-precipitation above SR = 19 was observed. It was shown that with a simple regulation of the SR, the structural and morphological characteristics of the obtained BaTiO3 nanoparticle can be effectively tuned.  相似文献   
3.
《Ceramics International》2022,48(13):18238-18245
Zinc oxide nanorods, ZnO NRs, were synthesized on a clean glass and coated with graphene oxide (GO) using spray coating method to enhance the photocatalytic activity in wastewater treatment. The ZnO NRs were synthesized using the solution process synthesis that was optimized using Taguchi method. Several synthesis parameters have been optimized and studied to determine the best synthesis parameter to grow ZnO NRs for the photodegradation of organic contaminants. Field emission scanning electron microscopy (FESEM) with EDX, X-ray diffraction (XRD), Raman, ultraviolet visible near-infrared (UV-VIS-NIR), and photoluminescence (PL) spectroscopies were used to investigate the structural and optical properties of the produced nanorods. FESEM images revealed the vertical growth of ZnO NRs as well as layers of GO covering the ZnO NRs' top surface. The Raman study demonstrates the combination peak of GO and ZnO, hence proving the GO layer's successful coating. After the GO coating, decrease in the bandgap of the synthesized photocatalyst was detected by PL and UV–Vis absorption measurements. Under UVC exposure with treatment time of 6 h, the degradation of MB with ZnO NRs/GO photocatalyst reached a degradation percentage of 97.86%, which is greater than the degradation percentage achieved using pristine ZnO NRs, which is 93.28%. The results validated that the coating of GO enhances the photocatalytic activity of the host material, ZnO NRs.  相似文献   
4.
Hydrothermal reaction in Cerium and Gadolinium solution as an optimization method is developed and first reported for the densification of gadolinia doped ceria, the barrier layer between Zirconia electrolyte and (La,Sr)(Co,Fe)O3-δ cathode. This method is based on the hydrothermal reaction for nano particles in-situly grown on porous surface, to improve barrier layer density, alongside the sintering of cathode at 1075 °C. As a result, the ohmic resistance is prominently decreased by ~16.4 % at 750 °C for electrolyte supported symmetrical cell. Whereas, the cathode polarization resistance is decreased by as much as a factor of ~3 from 0.3702 Ω·cm2 to 0.1325 Ω·cm2 at 750 °C and pO2=0.21atm. Furthermore, the anode supported cell exhibits higher open circuit voltage, smaller area specific resistance, elevated performance output and less degradation. And this modified barrier layer shows reduced Sr migration in 300 h operation at 750 °C. The hydrothermal reaction is demonstrated to prepare denser and sintering-active barrier layer with faster oxygen ion transfer and better interface connection, with large-scale application prospects and cost-competitiveness.  相似文献   
5.
《Ceramics International》2022,48(11):15422-15429
Hydrothermal method is widely used in the synthesis of perovskite-type oxides, whereas few studies are reported for the nucleation mechanism, so that the relationship between the crystal structures and reactive activities of reactants and products is still unknown. Herein, the reaction processes are analyzed on the basis of XRD, SEM and Raman characterizations, and the nucleation mechanism is investigated for the hydrothermal synthesis of MZrO3 (M = Ba, Sr, Ca). We propose that the negative charged cyclic tetramer complexes [Zr4(OH)8(OH)16]8- form in the hydrothermal reaction, which play major roles in the nucleation process. The tetramer complexes continually dehydrate and condensate to form substructural units composed of alkali-earth ions and 6-fold Zr tetramers; substructural units further dehydrate and distort to form perovskite structures. The reactive activation energy increases with the decreasing of M2+ (M = Ba, Sr, Ca) ionic radius because the incorporation of smaller A site ions in the perovskite structure is accompanied by greater rotation and distortion of the ZrO6 octahedra, leading to the decrease of reactive activity accordingly. In a word, the proposed nucleation mechanism in this paper is of great significance for the study of perovskite.  相似文献   
6.
《Ceramics International》2022,48(21):31478-31490
Considering the great importance of nanocomposite based photo-active nanomaterials for a variety of electronics, photonics and photovoltaics application, it is always worth considering to synthesize new hetreostructure. This paper describes the sol-gel and hydrothermal synthesis of metal (holmium, barium, and cadmium) doped TiO2/CdS nanocomposites for photoanode applications. Various characterization techniques, including XRD, FTIR, UV–VIS, EDX, and SEM were used to examine the synthesized heterostructures. The band gap of pure TiO2 NPs is 3.10 eV, which was effectively decreased to 2.16 eV by doping and coupling with CdS. The nanomaterial's crystallinity, crystallite size, morphology and elemental composition were determined by XRD, SEM and EDX, respectively. As sensitizers, the organic dyes dithizone, carminic acid, and pyrocatechol violet were used. FTIR was used to analyze the effective dye grafting on the surface of nanomaterials. In the presence of hole conducting P3HT polymer as solid state electrolyte, the sensitized materials were evaluated for solid state dye-sensitized solar cells. Compared to the reference device, Cd–TiO2/CdS photosensitized using Pyrocatechol violet dye demonstrated the highest efficiency of 2.68% (0.82%). Other parameters of this device, including open circuit voltage (Voc) and short circuit current (Jsc), were determined to be 16.97 mA cm2 and 0.41V, respectively.  相似文献   
7.
Sodalime float (SF) glass is widely used in our societies and industries. Hydrothermal corrosion method is one of the effective ways to prepare a superhydrophobic glass, but there is still lack of knowledge about hydrothermal corrosion behavior and mechanism of SF glass. We have hydrothermally treated SF glass at 180 °C for different time, and tried to reveal the aqueous corrosion process of SF glass. We have characterized the morphologies and chemical compositions of samples, and found that (1) the two sides of SF glass have different corrosion resistances, and (2) a multilayer structural coating with a nanoflake layer (Mg-rich gel layer), a nanowire layer (Ca-rich gel layer), and a porous layer (etched layer) is formed on the air-side of SF glass. Based on the experimental results, we have proposed an aqueous corrosion mechanism of SF glass. The insights of the hydrothermal corrosion behaviors and mechanism provide helpful guidelines to glass surface structural control and functionalization.  相似文献   
8.
Understanding the spheroidization process of micron-scaled α-Al2O3 powder in hydrothermal method is of great importance but still not completely revealed. The results demonstrated that SO42? played a significant role in the formation of spherical powder, while the bubble generated from the reaction of urea didn't work in the spheroidization process. The spheroidization process was summed up as two steps. The first was that SO42? limited the hydrolysis of Al3+ and reacted with Al3+ and OH- to form Al4(OH)10SO4, which nucleated and agglomerated into granular precipitates. The second was Ostwald ripening, which gave the spherical precursors a double-layered structure. When the spherical precursors obtained 120 °C were sintered at 1200 °C, α-Al2O3 were got and the spherical morphology still maintained with a large number of nano-sized pores. We anticipate the spherical α-Al2O3 with nano-sized pores can be applied in adsorption and filtration industries.  相似文献   
9.
In this work, praseodymium (Pr) doped cerium oxide (CeO2) was prepared using the microwave-assisted hydrothermal method (MAH) and the properties were investigated by X-ray diffraction analysis (XRD), Raman spectroscopy, Field Emission Gun Scanning Electron Microscope (FEG-SEM), BET method, Photoluminescence spectroscopy (PL), Fourier-transform infrared spectroscopy (FTIR), Ultraviolet–visible spectroscopy (UV–Vis), Electron paramagnetic resonance spectroscopy (EPR) and Magnetometry. The results showed that increasing the Pr-doping promotes a structural disorder due to increased oxygen vacancies. XRD confirmed a cubic structure without deleterious phases with modifications in the structure caused by alteration in the cerium oxidation state as well as changes in the crystallite size and strain obtained by Wellinson-Hall method. Raman spectroscopy shows that changing the Pr content results in samples with different defect densities at short range. FEG-SEM showed that the nanocrystals are agglomerated with small particles tend to aggregate spontaneously to decrease the surface energy. BET method showed that the Pr doping results in a gain of specific surface area. PL indicated that Pr3+ leads to distinct emissions; red emission associated to oxygen vacancies located near the conduction band (shallow defects), green emission associated to electron-hole recombination and orange emission associated to shallow defects and electron-hole recombination. FTIR indicated the complete process of nucleation with no other phase. UV–Vis showed the transitions between oxygen 2p, cerium 4f and praseodymium 4f states. The EPR signal shows events occurring around 344 mT. These events can be related due the presence of paramagnetic elements containing unpaired electrons, such as Ce (III), which is indicative of cerium reduction caused by Pr ions, as evidenced by Rietveld data. Regardless of the Pr concentration used in this research, the magnetic measurements show a superparamagnetic system below the blocking temperature of ~20 K and a paramagnetic system above this temperature, which indicates no significant changes in the average size of the nanoparticles. Surface area, crystallite size and the temperature are important parameters, which control the magnetic properties of such N-type semiconductors.  相似文献   
10.
《Ceramics International》2022,48(9):12112-12117
Gallium oxide (Ga2O3) is a promising candidate for next-generation solar-blind photodetectors (PDs) because of its large bandgap of 4.9 eV. Its single-crystal nanorod structure improves its photoelectric performance, which promotes carrier transformation and separation. However, Ga2O3 nanorods fabricated by the hydrothermal method have many oxygen vacancies, which largely enhance the dark current and reduce the on/off ratio of PDs, restricting application of such devices. Therefore, in this paper, dual strategies are applied to reduce the dark current of a metal–semiconductor–metal-structured Ga2O3 nanorod PD fabricated by the hydrothermal method. Through these dual strategies, which include annealing treatment and the application of a polymethyl methacrylate (PMMA) coating, the dark current of the PD is reduced from 1.34 × 10?7 to 2.04 × 10?9 A at 1 V, resulting in the on/off ratio of the PD reaching as high as 3.24 × 104. Besides, the responsivity and detectivity of the device reach 1.73 A/W and 2.53 × 1012 Jones respectively, which represents better performance than those of other reported Ga2O3 nanorod array PDs. Results have shown that the new strategy adopted can greatly improve the performance of Ga2O3-based ultraviolet photodetectors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号