首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3515篇
  免费   48篇
  国内免费   70篇
电工技术   4篇
综合类   88篇
化学工业   1900篇
金属工艺   156篇
机械仪表   19篇
建筑科学   125篇
矿业工程   54篇
能源动力   430篇
轻工业   191篇
水利工程   4篇
石油天然气   52篇
武器工业   3篇
无线电   16篇
一般工业技术   324篇
冶金工业   180篇
原子能技术   46篇
自动化技术   41篇
  2023年   22篇
  2022年   34篇
  2021年   67篇
  2020年   83篇
  2019年   79篇
  2018年   86篇
  2017年   67篇
  2016年   69篇
  2015年   53篇
  2014年   152篇
  2013年   282篇
  2012年   106篇
  2011年   282篇
  2010年   181篇
  2009年   257篇
  2008年   251篇
  2007年   228篇
  2006年   218篇
  2005年   150篇
  2004年   146篇
  2003年   160篇
  2002年   109篇
  2001年   49篇
  2000年   44篇
  1999年   49篇
  1998年   36篇
  1997年   49篇
  1996年   46篇
  1995年   43篇
  1994年   52篇
  1993年   30篇
  1992年   32篇
  1991年   25篇
  1990年   25篇
  1989年   26篇
  1988年   9篇
  1987年   12篇
  1986年   5篇
  1985年   7篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
排序方式: 共有3633条查询结果,搜索用时 15 毫秒
1.
MgH2 is considered as a promising hydrogen storage material for on-board applications. In order to improve hydrogen storage properties of MgH2, the amorphous TiMgVNi3-doped MgH2 is prepared by ball milling under hydrogen atmosphere. It is found that the catalytic (Ti,V)H2 and Mg2NiH4 nanoparticles are in situ formed after activation. As a result, the amorphous TiMgVNi3-doped MgH2 exhibits enhanced dehydrogenation kinetics (the activation energy for hydrogen desorption is 94.4 kJ mol?1 H2) and superior cycle durability (the capacity retention rate is up to 92% after 50 cycles). These results demonstrate that the in situ formation of highly dispersed catalytic nanoparticles from an amorphous phase is an effective pathway to enhance hydrogen storage properties of MgH2.  相似文献   
2.
In the current work, molecular dynamics simulation is employed to understand the intrinsic growth of carbon dioxide and methane hydrate starting from a seed crystal of methane and carbon dioxide respectively. This comparison was carried out because it has relevance to the recovery of methane gas from natural gas hydrate reservoirs by simultaneously sequestering a greenhouse gas like CO2. The seed crystal of carbon dioxide and methane hydrate was allowed to grow from a super-saturated mixture of carbon dioxide or methane molecules in water respectively. Two different concentrations (1:6 and 1:8.5) of CO2/CH4 molecules per water molecule were chosen based on gas–water composition in hydrate phase. The molecular level growth as a function of time was investigated by all atomistic molecular dynamics simulation under suitable temperature and pressure range which was well above the hydrate stability zone to ensure significantly faster growth kinetics. The concentration of CO2 molecules in water played a significant role in growth kinetics, and it was observed that maximizing the CO2 concentration in the aqueous phase may not result in faster growth of CO2 hydrate. On the contrary, methane hydrate growth was independent of methane molecule concentration in the aqueous phase. We have validated our results by performing experimental work on carbon dioxide hydrate where it was seen that under conditions appropriate for liquid CO2, the growth for carbon dioxide hydrate was very slow in the beginning.  相似文献   
3.
The chitosan was found to possess an excellent catalytic performance in n-butyraldehyde selfcondensation to 2E2H. Under suitable conditions, the conversion of n-butyraldehyde, the yield and selectivity of 2E2H separately attained 96.0%, 86.0% and 89.6%. The chitosan catalyst could be recovered and used for 5 times without a significant deactivation after being treated with ammonium hydroxide. In order to elucidate the reaction mechanism, the adsorption and desorption of n-butyraldehyde on the surface of chitosan were studied using in situ FT-IR spectroscopy analysis. The result showed that n-butyraldehyde interacts with-NH2 group of chitosan to form an intermediate species with an enamine structure. Then the reaction process of n-butyraldehyde self-condensation was monitored by React-IR technique and it was found that n-butyraldehyde self-condensation to 2-ethyl-3-hydroxyhexanal followed by a dehydration reaction to 2-ethyl-2-hexenal. On this basis, chitosan-catalyzed n-butyraldehyde self-condensation reaction mechanism was speculated and its reaction kinetics was investigated. The self-condensation reaction follows auto-catalytic reaction characteristics and then the corresponding kinetic model was established.  相似文献   
4.
In the present study we made an effort to deploy eco-friendly synthesized reduced graphene oxide/Lanthanum Alluminate nanocomposites (RGO-LaAlO3) and Lanthanum Alluminate (LaAlO3) as adsorbents to remove dye from the synthetic media. XRD, SEM, BET surface area and EDX have been used to characterize the above-mentioned adsorbents. The impacts of different factors like adsorbent dosage, the concentration of adsorbate and PH on adsorption were studied. The best fit linear and nonlinear equations for the adsorption isotherms and kinetic models had been examined. The sum of the normalized errors and the coefficient of determination were used to determine the best fit model. The experimental data were more aptly fitted for nonlinear forms of isotherms and kinetic equations. Pseudo-second-order and Freundlich isotherm model fits the equilibrium data satisfactorily. Methyl orange (MO) has been used as model dye pollutant and maximum adsorption capacity was found to be 469.7 and 702.2 mg g?1 for LaAlO3 and RGO-LaAlO3, respectively.  相似文献   
5.
《Ceramics International》2022,48(13):18676-18686
A high content of quartz is usually present in Australian gibbsite-boehmite bauxite. The reaction between quartz and sodium aluminate solution at high temperatures in the Bayer process can lead to loss of alumina and sodium oxide. Therefore, to improve alumina recovery, the reaction of quartz needs to be avoided. The digestion behavior of Australian gibbsite-boehmite bauxite and pure quartz in the Bayer process at 230–250 °C was systematically studied in this paper. The mineral composition and morphology of the reaction products were characterized and the kinetics of the quartz dissolution process was studied in detail. It was shown that boehmite in gibbsite-boehmite bauxite can be completely digested at high temperature (250 °C) with a short digestion time (5 min). A short digestion time results in a low reaction rate of quartz in bauxite, and is ideal for alumina recovery at high temperatures. The quartz reaction rate rapidly increases with longer digestion times. The apparent activation energy of the dissolution of quartz in bauxite in the caustic solution is 151.9 kJ mol?1, and the rate-controlling step of this reaction process is the interfacial chemical reaction. By controlling the particle size of bauxite, the digestion temperature, and the digestion time, the reaction rate of quartz in bauxite can be inhibited, which is beneficial for improving alumina recovery and reducing caustic consumption. Therefore, based on the above theoretical research, a process for digesting gibbsite-boehmite bauxite is proposed using high digestion temperature (250 °C), short digestion time (5 min) and large mineral size. An economic benefit of about US$101.9 million for a refinery with the annual output of 2 million tons of alumina can be created by the proposed process.  相似文献   
6.
《能源学会志》2020,93(4):1449-1459
Oil shortage and awareness of environment pollution leads to the extensive use of biodegradable starch-based materials against synthetic plastics. The accumulated wastes of these plastics takes more time for natural recycling and the process is complex. Therefore the best option of recycling would be to convert these polymers into a source of energy by pyrolysis. So to understand the pyrolytic behaviour, kinetics of such waste plastics is studied by using thermogravimetric analysis at different heating rates of 10 °C, 20 °C, 40 °C, 60 °C, 80 °C and 100 °C in nitrogen atmosphere followed by characterization of the pyrolysis products. The kinetic parameters are obtained for two major stages of decomposition in two different temperature ranges 250–620 °C and 620–855 °C by iso-conversional methods such as Friedman, Coats-Redfern, FWO and Kissinger methods. The regression coefficient data (>0.9) of kinetic plots obtained for different methods best fits to the kinetic equation. Empirical formula of the compound is determined by ultimate analysis is CH2.214S0.0018O0.6910. Proximate analysis gives the idea of volatile component which is74.33%. The range of average value of activation energy is 120.7013 kJ/mol to 140.7707 kJ/mol for the biodegradable plastic plate with different conversion (0.1–0.6) and (0.1–0.3) respectively at two different temperatures. The pyrolysis products obtained using a semi-batch reactor are characterized to know their composition and other properties.  相似文献   
7.
《能源学会志》2020,93(2):624-633
In order to solve the problem of marine microplastics and realize the harmless resource utilization of plastics, the gasification experiments of polycarbonate (PC) microplastics were carried out in supercritical water and a novel seawater gasification of microplastic experiment was investigated. In this paper, the effects of different operating conditions (temperature, time, feedstock concentration, pressure) on gasification performance were discussed. The gasification kinetic of microplastics in supercritical water was calculated. The experimental results showed that the increase in gasification temperature and time enhanced the cracking reaction and free radical reaction of the microplastics to increase the gasification efficiency, while the reduction in feedstock concentration improved the gasification efficiency by increasing the gasification level of unit feedstock. The change in pressure had no significant effect on gasification due to the fact that the properties of the supercritical water were not significantly changed. It was found that the valuable results that all alkali metal salts in seawater promote hydrogen conversion, while in terms of carbon conversion, only KCl, CaCl2, NaHCO3 and seawater had a significant catalytic effect on the gasification. Seawater gasification of microplastics was a potential resource utilization method. Finally, it was considered that the PC plastic gasification conformed to the random nucleation and subsequent growth model (n = 3), and the reaction activation energy was 230.45 kJ/mol, which was smaller than that of traditional pyrolysis.  相似文献   
8.
In a bid to complement the lost reserves from fossils, recent advances in research are tailored towards producing hydrogen as an alternative source of fuel which is aimed at fostering a globally sustainable and reliable energy-economy. In this work, hydrogen was produced from formic acid (FA) using a new technology that involves the use of copper nanoparticles (CuNPs) supported on triethanolamine. The CuNP-catalysts of variant concentrations (i.e. 0.6–1.2 M) were synthesized using the conventional chemical deposition method. Also, a novel approach that bothers on the application of the Differential Method of Analysis (DMA) was used in determining the kinetic parameters for the FA-dehydrogenation. Based on the results, the volume of H2 produced varied with time, pH, concentration and catalyst-size. At 6 h, the 1 M CuNPs gave the highest volume (815 mL) of hydrogen with corresponding pH, particle size and approximate conversion of 3.19, 1.5 nm and 100% respectively, whereas, over extended periods i.e. over 6 h, the approximate volume-conversions of FA increased insignificantly for all catalysts. According to the investigation, the optimum CuNP-catalyst concentration required to produce 815 mL H2 in 6 h is 1 M. The decomposition was a first-order-type with a rate constant (k-value) of 1.0041 s−1.  相似文献   
9.
Chloromethane is an important reagent for methylations in the process industry. However, as a gas suspected of causing cancer, it is rarely used at laboratory scale. Therefore, a setup is presented here for studies in a laboratory under safe and reproducible conditions. The use of a microreactor guarantees high heat transfer rates and a low holdup of the reagent. As a proof-of-concept, the reaction of chloromethane with the secondary amine morpholine in aqueous solution is investigated. By applying elevated pressures, a liquid-liquid system with enhanced solubility of chloromethane in the aqueous phase is accessible.  相似文献   
10.
The curing of wood adhesives has so far been evaluated on a basis of parameters, which offer process optimization only to a small degree. However, the curing becomes analyzable in detail by using oscillation measurements and a test setup adapted to the bonding process. With time sweep measurements, the adhesion process can be divided into characteristic ranges of molecular and structural processes. This method is presented and analyzed using a polyurethane prepolymer for joining wood-based materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号