首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3553篇
  免费   380篇
  国内免费   241篇
电工技术   100篇
综合类   213篇
化学工业   860篇
金属工艺   451篇
机械仪表   45篇
建筑科学   79篇
矿业工程   37篇
能源动力   247篇
轻工业   33篇
水利工程   7篇
石油天然气   43篇
武器工业   12篇
无线电   700篇
一般工业技术   905篇
冶金工业   348篇
原子能技术   42篇
自动化技术   52篇
  2023年   73篇
  2022年   94篇
  2021年   97篇
  2020年   137篇
  2019年   190篇
  2018年   170篇
  2017年   148篇
  2016年   116篇
  2015年   125篇
  2014年   171篇
  2013年   184篇
  2012年   216篇
  2011年   295篇
  2010年   213篇
  2009年   212篇
  2008年   189篇
  2007年   247篇
  2006年   221篇
  2005年   166篇
  2004年   145篇
  2003年   135篇
  2002年   123篇
  2001年   86篇
  2000年   75篇
  1999年   61篇
  1998年   41篇
  1997年   47篇
  1996年   29篇
  1995年   34篇
  1994年   34篇
  1993年   24篇
  1992年   17篇
  1991年   14篇
  1990年   16篇
  1989年   11篇
  1988年   4篇
  1987年   2篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1951年   1篇
排序方式: 共有4174条查询结果,搜索用时 31 毫秒
1.
The electromagnetic materials are featured by good magnetic permeability and dielectric constant characteristics, which are of significant importance in solving the pollution problem of electromagnetic. In this study, after the complete of the use of sol-gel method, argon gas was then introduced for calcination, and eventually a new type of MWCNTs/Ni0.5Zn0.5Nd0.04Fe1.96O4 composites was synthesized after the above mentioned procedures. The synthesized MWCNTs were able to be adsorbed on the surface of Ni0.5Zn0.5Nd0.04Fe1.96O4 and could form a good conductive work of 3D. Also, the effect of additional MWCNTs on microwave absorption properties of MWCNTs/Ni0.5Zn0.5Nd0.04Fe1.96O4 composites were also observed in this study. The results indicate that the additional MWCNTs function to significantly improve the microwave absorption property of MWCNTs/Ni0.5Zn0.5Nd0.04Fe1.96O4. Through altering the amount of MWCNTs, the microwave attenuation performance and impedance matching coefficient of this electromagnetic materials can be effectively improved. The S2 sample presented a minimum reflection loss of ?35.05 dB when its thickness reached 1.6 mm, meanwhile, the effective absorption bandwidth achieved 4.55 GHz. The prepared composites perform well in microwave absorption, which can attribute to the reasonable ratio of composites as well as its interaction with both of the magnetic and dielectric components. This research paved the way for novel ideas to be put in the electromagnetic absorption materials with high-efficient.  相似文献   
2.
In this study, La was doped into the lithium layer of Li-rich cathode material and formed a layered-spinel hetero-structure. The morphology, crystal structure, element valence and kinetics of lithium ion migration were studied by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The La doped lithium-rich cathode material exhibited similar initial discharge capacity of 262.8 mAh g?1 at 0.1 C compared with the undoped material, but the discharge capacity retention rate can be obviously improved to 90% after 50 cycles at 1.0 C. Besides that, much better rate capability and Li+ diffusion coefficient were observed. The results revealed that La doping not only stabilized the material structure and reduced the Li/Ni mixing degree, but also induced the generation of spinel phase to provide three-dimensional diffusion channels for lithium ion migration. Moreover, the porous structure of the doped samples also contributed to the remarkable excellent electrochemical performance. All of these factors combined to significantly improve the electrochemical performance of the material.  相似文献   
3.
LiFePO4 modified by N-doped graphene (NG) with a three-dimensional conductive network structure was synthesized via a one-step in situ hydrothermal method. The effects of N amount of NG on the phase structure, morphology, and electrochemical properties of LiFePO4 are investigated in this study. X-ray diffraction (XRD) results show that doping suitable N amounts in NG do not alter the crystal structure of LiFePO4, and scanning electron microscopy (SEM) images show that NG can slightly reduce the particle size of LiFePO4. The high-resolution transmission electron microscopy (HRTEM) results show that the LiFePO4 particles are well covered and connected by NG. The electrochemical performance confirms that LiFePO4 modified by 20% N-doped graphene (named LFP/NG-4) displays a perfect specific capacity of 166.6 mAh·g?1 at a rate of 0.2C and can reach 125 mAh·g?1 at a rate of 5 C. Electrochemical impedance spectroscopy (EIS) results illustrate that the charge transfer resistance value of the LFP/NG-4 composite is only 58.6 Ω, which is very low compared with LiFePO4. Cyclic voltammetry (CV) tests indicate that the addition of 20% N-doped graphene can effectively reduce electrode polarization and improve reversibility. The LFP/NG-4 composite with a three-dimensional conductive network structure can be regarded as a promising cathode material for Li-ion batteries.  相似文献   
4.
Multicolor upconversion luminescence materials show significantly applications in materials science. In this paper, the novel Yb3+-sensitized Na3La(VO4)2 upconversion luminescence crystals are synthesized by the solid-state reaction method. Three primary colors upconversion luminescence are successfully achieved in Na3La(VO4)2:Yb3+,Tm3+, Na3La(VO4)2:Yb3+,Er3+, and Na3La(VO4)2:Yb3+,Ho3+ crystals excited by the single 980 nm LD. Multicolor upconversion luminescence can be obtained by simply adjusting the combination ratios of these three samples. Luminescence mechanisms of the Yb3+-sensitized system are discussed in detail. In the Na3La(VO4)2 host material, the Yb3+/Ho3+ codoped system exhibits unusual red upconversion luminescence based on the short decay time of Ho3+ ion 5I6 level, which provides the possibility of three primary color luminescence under 980 nm excitation.  相似文献   
5.
The widespread use of fuel cell technology is hampered by the use of expensive and scarce platinum metal in electrodes which is required to facilitate the sluggish oxygen reduction reaction (ORR). In this work, a viable synthetic approach was developed to prepare iron-based sulfur and nitrogen dual doped porous carbon (Fe@SNDC) for use in ORR. Benzimidazole, a commercially available monomer, was used as a precursor for N doped carbon and calcined with potassium thiocyanate at different temperatures to tune the pore size, nitrogen content and different types of nitrogen functionality such as pyridinic, pyrrolic and graphitic. The Fe@SNDC–950 with high surface area, optimum N content of about 5 at% and high amount of pyridinic and graphitic N displayed an onset potential and half-wave potential of 0.98 and 0.83 V vs RHE, respectively, in 0.1 M KOH solution. The catalyst also exhibits similar oxygen reduction reaction performance compared to Pt/C (20 wt%) in acidic media. Furthermore, when compared to commercially available Pt/C (20 wt%), Fe@SNDC–950 showed enhanced durability over 6 h and poison tolerance in case of methanol crossover with the concentration up to 3.0 M in oxygen saturated alkaline electrolyte. Our study demonstrates that the presence of N and S along with Fe-N moieties synergistically served as ORR active sites while the high surface area with accessible pores allowed for efficient mass transfer and interaction of oxygen molecules to the active sites contributing to the ORR activity of the catalyst.  相似文献   
6.
Sulfured doped carbon electrocatalysts is synthesized from the waste biomass Sargassum spp. Two doping procedures are examined to determine which is better for Oxygen Reduction Reaction (ORR); one by doping biocarbon obtained from the pyrolysis of the biomass and the second through a process of in situ doping in autoclave. The electrocatalyst are obtained from pyrolysis of the sample at 700 °C, which is finally characterized as a metal free electrocatalyst for the ORR. The electrocatalyst are characterized by BET surface area analysis, Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and the electrochemical characterization is determined in 0.1 M KOH. The sample SSKPT-1 exhibits a promising electrocatalytic activity with an onset potential of 0.896 V vs RHE and a current density of 5 mA cm?2 (at 0.2 V vs. RHE) which could be partly attributed to its high BET surface area of 2755 m2 g?1.  相似文献   
7.
《Ceramics International》2022,48(14):20000-20009
Zinc oxide (ZnO) offers a major disadvantage of asymmetry doping in terms of reliability, stability, and reproducibility of p-type doping, which is the main hindrance in realization of optoelectronic devices. The problem is even more complicated due to formation of various native defects in unintentionally doped n-type ZnO. The realization of p-type conductivity in doped ZnO requires an in-depth understanding of the formation of an effective shallow acceptor, as well as donor-acceptor compensation. Photophysical properties such as photoconductivity along with photoluminescence (PL) studies have unprecedentedly and effectively been utilized in this work to monitor the evolution of various in-gap defects. Phosphorus (P) doped ZnO thin films have been grown by RF magnetron sputtering under various Ar to O2 gas ratios to investigate the effect of O2 on the donor-acceptor compensation by comprehensive photoconductivity measurements supported by the PL studies. Initial elemental analyses indicate presence of abundant zinc vacancies (VZn) in O-rich ambience. The results predict that P sits in the zinc (Zn) site rather than the oxygen (O) site causing the formation of PZn–2VZn acceptor-like defects, which compensates the donor defects in P doped ZnO films. Photocurrent spectra uniquely reveal presence of more oxygen vacancies (VO) defects states in lower O2 flow, which gets compensated with an increase in the O2 flow. Successive photocurrent transients indicate probable presence of more VO in the films grown with lower O2 flow and more VZn in higher O2 flow. Overall the photosensitivity measurements clearly present that O-rich ambience expedites the formation of acceptor defects which are compensated, thereby lowering the dark current and enhancing the ultraviolet photosensitivity.  相似文献   
8.
Metal/carbon composite materials are highly promising electrocatalysts for water electrolysis. In this work, three composites of metal cobalt nanoparticles highly dispersed in N-doped carbon materials were facilely constructed by pyrolysis of different phenylenediamine based Schiff base-Co complexes (PDBs). Interestingly, the composites derived from PDBs based on different phenylenediamine exhibited different morphologies. The superior case is that rodlike composite catalyst was derived from o-phenylenediamine based PDBs. The obtained catalyst exhibited remarkable performances for both cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER), as well as overall water electrolysis. Only 172 and 289 mV of overpotentials and 1.57 V of cell voltage were exhibited at 10 mA cm?2 for HER, OER and water splitting in 1.0 M KOH, respectively. The catalyst also displayed robust stability and high Faraday efficiency, and thus are potential high-performance catalyst for commercial water electrolysis.  相似文献   
9.
《Ceramics International》2022,48(12):16997-17008
Effective design and fabrication of novel visible light-oriented photocatalysts is an existing challenging task that requires further dedicated efforts, and it has been always a main concern among the scientific community. This study deals with the design and fabrication of an extremely active and ultrafast ternary photocatalyst based on Ag nanoparticles, polypyrrole doped carbon black (PPy-C) and mesoporous TiO2 (m-TiO2). Sol-gel methodology along with sonication and photodeposition routes have been employed for the successful creation of the ternary framework. Ternary photocatalyst composed of uniform spherical titania nanoparticles (10–15 nm in size) perfectly intermingled with the polymeric linkage of PPy-C. Fruitful creation of unique trio photocatalyst between AgNPs, PPy-C and m-TiO2 was confirmed by XPS and XRD. FTIR analysis further supports the development of nanocomposite photocatalyst. TEM analysis showed uniform spherical m-TiO2 nanoparticles (10–15 nm in size) covered by PPy-C with compact nodes like appearance interlocked very well among each other. The newly developed Ag@PPy-C/m-TiO2 ternary photocatalyst exhibited band gap energy in desired visible range of spectra. The photocatalytic efficiency for all created photocatalysts has been evaluated taking Imidacloprid (insecticide derivative) and methylene blue (MB) dye as target pollutants. The novel Ag@PPy-C/m-TiO2 photocatalyst produced astonishing results with ultrafast removal of both Imidacloprid as well MB dye under visible light irradiation. The newly created ultrafast Ag@PPy-C/m-TiO2 photocatalyst has removed 96.0% of the insecticide Imidacloprid in only 25 min with almost ? 2.65 times more efficient than bare m-TiO2 towards the removal of insecticide derivative. The present report offers a highly encouraging and vastly talented Ag@PPy-C/m-TiO2 ternary photocatalyst, enabling the ideal management of extremely lethal and notorious chemicals.  相似文献   
10.
In this work, we introduced a simple solution processing method to prepare yttrium (Y) doped hafnium oxide (HfO2) based dielectric films. The films had high densities, low surface roughness, maximum permittivity of about 32, leakage current < 1.0 × 10?7 A/cm2 at 2 MV/cm, and breakdown field >5.0 MV/cm. In addition to dielectric performance, we investigated the influence of YO1.5 fraction on the electronic structure between Y doped HfO2 thin films and silicon (Si) substrates. The valence band electronic structure, energy gap and conduction band structure changed linearly with YO1.5 fraction. Given this cost-effective deposition technique and excellent dielectric performance, solution-processed Y doped HfO2 based thin films have the potential for insulator applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号