首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   534篇
  免费   4篇
  国内免费   17篇
电工技术   5篇
综合类   11篇
化学工业   179篇
金属工艺   37篇
机械仪表   7篇
建筑科学   8篇
矿业工程   4篇
能源动力   113篇
轻工业   1篇
石油天然气   3篇
无线电   21篇
一般工业技术   78篇
冶金工业   72篇
原子能技术   12篇
自动化技术   4篇
  2023年   17篇
  2022年   22篇
  2021年   21篇
  2020年   20篇
  2019年   27篇
  2018年   31篇
  2017年   21篇
  2016年   11篇
  2015年   6篇
  2014年   25篇
  2013年   24篇
  2012年   31篇
  2011年   43篇
  2010年   34篇
  2009年   30篇
  2008年   34篇
  2007年   18篇
  2006年   14篇
  2005年   11篇
  2004年   11篇
  2003年   5篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1999年   18篇
  1998年   10篇
  1997年   13篇
  1996年   9篇
  1995年   5篇
  1994年   3篇
  1993年   8篇
  1992年   4篇
  1991年   3篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1975年   1篇
排序方式: 共有555条查询结果,搜索用时 15 毫秒
1.
Heat transfer within ceramic feedstock powders is still unclear, which impedes optimization of the thermal and mechanical properties of the thermal sprayed coatings. The microspheres (yttria-stabilized zirconia YSZ and lanthanum zirconate LZO) were prepared via the electro-spraying assisted phase inversion method (ESP). The thermal properties of the two ESP microspheres and a commercial hollow spherical powder (HOSP) were investigated by using theoretical, experimental, and simulation methods. Thermal conductivity of the single microsphere was estimated via a novel nest model that was derived from the Maxwell-Eucken 1 and the EMT model. Thermal conductivity of a single YSZ/LZO-ESP microsphere prepared at 1100–1200 °C was within 0.36–0.75 W/m K, which was ~ 20 % lower than that of a single YSZ-HOSP microsphere with a similar porosity. Heat flux simulation showed that high tortuosity around the multi-scaled voids of the ESP microsphere led to a more efficient decrease in thermal conductivity compared with total porosity.  相似文献   
2.
In the attempt to reduce surface free energy of silica to improve interaction of silica with silver, silica was doped by different amounts of low surface energy lanthanum, La_2O_3, through impregnation. The doped and undoped silica were used as supports for preparation of Na/Ag/Mo/La_2O_3-SiO_2 catalysts. Catalytic performances of the catalysts were evaluated in direct epoxidation of propylene(DPO) using molecular oxygen under atmospheric pressure and without adding hydrogen. Adding 5 wt%La to the Na/Ag/Mo/SiO_2 catalyst improves both the catalysts electivity in DPO and its stability over 20h of time-on-stream.The characterization results show that La_2O_3 species interact strongly with silver particles on the silica surface which result in significant improvement in the dispersion profile of silver and marked decrease in the size of silver nanoparticles(AgNPs). The estimated mean diameter of AgNPs is ca. 4.0 nm in Na/Ag/Mo/5 wt%La_2O_3-SiO_2, which is smaller than that(53.9 nm) found in Na/Ag/SiO_2. The presence of subnanometer AgNPs on Ag/La_2O_3-SiO_2 prior addition of MoO_3 and NaCl to the sample can enhance the mutual electronic synergism between Ag, MoO_3 and Na for selective production of propylene oxide.  相似文献   
3.
《Ceramics International》2019,45(15):18614-18622
Low ionic conductivity at room temperature and poor interfacial compatibility are the main obstacles to restrain the practical application of polymer solid electrolytes. In this work, lanthanum zirconate (LZO) fibers were prepared by electrospinning method and used for the first time as fillers in sandwich polypropylene carbonate (PPC)-based solid electrolyte. Meanwhile, a graphite coating was applied on one surface of the composite solid electrolyte (CSE) membrane. The results show that the LZO fibers significantly increases the room-temperature electrochemical performance of the CSE, and the graphite coating enhances the interfacial compatibility between electrolyte and lithium anode. Furthermore, an ultra-thin PPC-LZO CSE with a total thickness of 22 μm was prepared and used in NCM622/CSE/Li solid-state cell, which shows an initial discharge capacity of 165.6 mAh/g at the current density of 0.5C and a remaining capacity of 113.0 mAh/g after 250 cycles at room temperature. Rise to 1C, the cell shows an initial discharge capacity of 154.2 mAh/g with a remaining capacity of 95.6 mAh/g after 250 cycles. This ultra-thin CSE is expected to be widely applied in high energy-density solid-state battery with excellent room-temperature electrochemical performances.  相似文献   
4.
Two kinds of Cu-Al_2O_3 composites(with and without La) were prepared via mechanical alloying-spark plasma sintering(MA-SPS) method. Microstructure, mechanical properties and electrical resistivity were investigated systematically using metallography, scanning electron microscopy, transmission electron microscopy, mechanical and electrical properties testing. The results indicate that an appropriate amount of La can homogenize the distribution of Al_2O_3. As such, yield strength, ultimate tensile strength and elongation of Cu-Al_2O_3-La are greatly increased. Some semi-coherent interface between Cu and Al_2O_3 is found, which means a low interface energy. The grain shape of Cu changes to irregular band with the addition of La. This change results in a density decrease of grain boundary and reduces electrical resistance. Lanthanum may exist in the form of La_2O_3.  相似文献   
5.
With superior properties of Mg such as high hydrogen storage capacity (7.6 wt% H/MgH2), low price, and low density, Mg has been widely studied as a promising candidate for solid-state hydrogen storage systems. However, a harsh activation procedure, slow hydrogenation/dehydrogenation process, and a high temperature for dehydrogenation prevent the use of Mg-based metal hydrides for practical applications. For these reasons, Mg-based alloys for hydrogen storage systems are generally alloyed with other elements to improve hydrogen sorption properties. In this article, we have added Na to cast Mg–La alloys and achieved a significant improvement in hydrogen absorption kinetics during the first activation cycle. The role of Na in Mg–La has been discussed based on the findings from microstructural observations, crystallography, and first principles calculations based on density functional theory. From our results in this study, we have found that the Na doped surface of Mg–La alloy systems have a lower adsorption energy for H2 compared to Na-free surfaces which facilitates adsorption and dissociation of hydrogen molecules leading to improvement of absorption kinetic. The effect of Na on the microstructure of these alloys, such as eutectic refinement and a density of twins is not highly correlated with absorption kinetics.  相似文献   
6.
Lanthanum zirconate is a promising thermal barrier coating material owing to its excellent thermophysical properties and La plays the key role in its corrosion resistance. Here, an amorphous precursor is used as raw feedstock material so as to synthesize lanthanum zirconate coatings with tailorable composition by atmospheric plasma spray (APS). Three lanthanum zirconate coatings of La1.7Zr2.3O7.15, La2.0Zr2.0O7.0 and La2.3Zr1.7O6.85 are fabricated. Furthermore, the corrosion resistance of the as-sprayed coatings against CaO-MgO-Al2O3-SiO2 at 1250℃ is investigated. The increased La content promotes the formation of a sealing layer of the crystalline Ca2La8(SiO4)6O2 apatite, which slows down the penetration of molten CaO-MgO-Al2O3-SiO2. Therefore, the infiltration rate of the La2.3Zr1.7O6.85 coating decreased up to 42.6 % compared with the other two coatings. This work develops a feasible preparation strategy to control the La composition for the improved corrosion resistance, which is expected to guide the future coating design and synthesis for the materials with big composition changes during the APS process.  相似文献   
7.
The deposition of LaFeO3 at the surface of a graphitic carbon nitride (g-C3N4) film via magnetron sputtering followed by oxidation for photoelectrochemical (PEC) water splitting is reported. The LaFeO3/g-C3N4 film was investigated by various characterization techniques including SEM, XRD, Raman spectroscopy, XPS and photo-electrochemical measurements. Our results show that the hydrogen production rate of a g-C3N4 film covered by a LaFeO3 film, exhibiting both a thickness of ca. 50 nm, is of 10.8 μmol h−1 cm−2 under visible light irradiation. This value is ca. 70% higher than that measured for pure LaFeO3 and g-C3N4 films and confirms the effective separation of electron-hole pairs at the interface of LaFeO3/g-C3N4 films. Moreover, the LaFeO3/g-C3N4 films were demonstrated to be stable and retained a high activity (ca. 70%) after the third reuse.  相似文献   
8.
Materials based on CeO2–La2O3–Er2O3 system are promising candidates for a wide of applications, but the phase relationship has not been studied systematically previously. To address this challenge, the isothermal section of the phase diagram for 1500 °C was investigated. The phase relations in the CeO2–La2O3–Er2O3 ternary system at 1500 °C were studied by X-ray diffraction and scanning electron microscopy in the overall concentration range. To study phase relationships at 1500 °C the as-repared samples were thermally treated in two stages: at 1100 °C (for 300 in air) and then at 1500 °C (for 70 h in air) in the furnaces with heating elements based on Fecral (H23U5T) and Superkanthal (MoSi2), respectively. The solid solutions based on various polymorphous forms of constituent phases and with perovskite-type structure of LaErO3 (R) with orthorhombic distortions were revealed in the system. No new phases were found. The isothermal section of the phase diagram for the CeO2–La2O3–Er2O3 system has been constructed. It was established that in the ternary CeO2–La2O3–Er2O3 system there exist fields of solid solutions based on hexagonal (A) modification of La2O3, cubic modification of CeO2 with fluorite-type structure (F), cubic modification Er2O3 and with perovskite-type structure of LaErO3 (R) with orthorhombic distortions. The maximal solubility of ceria in LaErO3 was found to be around ∼ 2 mol% CeO2 along the section CeO2–(50 mol % La2O3 –50 mol% Er2O3).  相似文献   
9.
《Ceramics International》2020,46(10):16472-16479
(Pb1-xLax) (Zr0.92Ti0.08)1-x/4O3 (PLZT x/92/8, x = 3, 5 and 7 at%) ceramics with compositions near the antiferroelectric (AFE)-ferroelectric (FE) phase boundary were fabricated by a solid-state reaction method. The effect of lanthanum content on the conduction behaviors and relaxation processes has been investigated. It was verified that the main phase with orthorhombic structure was formed in all compositions. The increase of lanthanum substitution resulted in an enhancement of diffuse phase transition. Impedance analysis suggested that the ac conductivity decreased with increasing lanthanum content. Moreover, thermally stimulated depolarization current study was utilized to establish the correlation between defect structures and relaxation processes. It showed three peaks with distinct characteristics, which originated from dipole orientation, oxygen vacancy migration and phase transition respectively. The oxygen vacancy-related defects induced by lanthanum doping were mainly responsible for the variation of conduction behaviors and relaxation processes.  相似文献   
10.
The synergistic influence of lanthanum and cobalt co-doping on room temperature ferromagnetism (RTFM) of TiO2 system is investigated. A series of Ti0.97?xCo0.03LaxO2 nanoparticles were prepared and their structures and properties were systematically studied with X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy, UV–vis spectrophotometer, Raman spectra and magnetic measurement techniques, respectively. Detailed experimental characterizations indicate that the as-prepared La and Co co-doped samples exhibit single anatase phase, and all the samples exhibit strong visible photoluminescence associated with oxygen vacancies and a clear ferromagnetic hysteresis loop, both of which were dramatically enhanced with La and Co co-doping, and the maximum saturation magnetization (Ms) reaches 1.38 emu/g at the La content of 6 mol%. It is speculated that oxygen vacancies modulated by ionic La play an important role in the enhanced RTFM, which can be attributed to the bound magnetic polarons (BMPs) formed via ferromagnetic coupling between two neighboring Co2+ ions mediated by oxygen vacancy (F+ center). Our results present an alternative method to obtain high performance RTFM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号