首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27766篇
  免费   2975篇
  国内免费   1623篇
电工技术   5729篇
综合类   1380篇
化学工业   6485篇
金属工艺   1983篇
机械仪表   1188篇
建筑科学   734篇
矿业工程   621篇
能源动力   2470篇
轻工业   1182篇
水利工程   201篇
石油天然气   415篇
武器工业   105篇
无线电   2524篇
一般工业技术   4278篇
冶金工业   1027篇
原子能技术   1354篇
自动化技术   688篇
  2024年   48篇
  2023年   507篇
  2022年   859篇
  2021年   1013篇
  2020年   1253篇
  2019年   1067篇
  2018年   878篇
  2017年   1240篇
  2016年   1149篇
  2015年   962篇
  2014年   1565篇
  2013年   1454篇
  2012年   1831篇
  2011年   2239篇
  2010年   1586篇
  2009年   1525篇
  2008年   1409篇
  2007年   1772篇
  2006年   1551篇
  2005年   1294篇
  2004年   1145篇
  2003年   1066篇
  2002年   882篇
  2001年   766篇
  2000年   639篇
  1999年   448篇
  1998年   347篇
  1997年   259篇
  1996年   291篇
  1995年   225篇
  1994年   230篇
  1993年   140篇
  1992年   139篇
  1991年   123篇
  1990年   84篇
  1989年   66篇
  1988年   70篇
  1987年   48篇
  1986年   56篇
  1985年   32篇
  1984年   24篇
  1983年   13篇
  1982年   15篇
  1981年   11篇
  1980年   6篇
  1979年   2篇
  1978年   5篇
  1974年   4篇
  1959年   5篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
1.
Leucokinins (LKs) constitute a family of neuropeptides identified in numerous insects and many other invertebrates. LKs act on G-protein-coupled receptors that display only distant relations to other known receptors. In adult Drosophila, 26 neurons/neurosecretory cells of three main types express LK. The four brain interneurons are of two types, and these are implicated in several important functions in the fly’s behavior and physiology, including feeding, sleep–metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. The 22 neurosecretory cells (abdominal LK neurons, ABLKs) of the abdominal neuromeres co-express LK and a diuretic hormone (DH44), and together, these regulate water and ion homeostasis and associated stress as well as food intake. In Drosophila larvae, LK neurons modulate locomotion, escape responses and aspects of ecdysis behavior. A set of lateral neurosecretory cells, ALKs (anterior LK neurons), in the brain express LK in larvae, but inconsistently so in adults. These ALKs co-express three other neuropeptides and regulate water and ion homeostasis, feeding, and drinking, but the specific role of LK is not yet known. This review summarizes Drosophila data on embryonic lineages of LK neurons, functional roles of individual LK neuron types, interactions with other peptidergic systems, and orchestrating functions of LK.  相似文献   
2.
All-solid-state lithium batteries(ASSLB) are promising candidates for next-generation energy storage devices.Nevertheless,the large-scale commercial application of high energy density AS S LB with the polymer electrolyte still faces challenges.In this study,a thin solid polymer composite electrolyte(SPCE) is prepared through a facile and cost-effective strategy with an infiltration of thermoplastic polyurethane(TPU),lithium salt(LiTFSI or LiFSI),and halloysite nanotubes(HNTs) in a porous framework of polyethylene separator(PE)(TPU-HNTs-LiTFSI-PE or TPU-HNTs-LiFSI-PE).The composition,electrochemical performance,and especially the effect of anions(TFSI~-and FSI~-) on cycling performance are investigated.The results reveal that the flexible TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE with a thickness of 34 μm exhibit wide electrochemical windows of 4.9 and 5.1 V(vs.Li+/Li) at 60℃,respectively.Reduction in FSI~-tends to form more LiF and sulfur compounds at the interface between TPU-HNTs-LiFSI-PE and Li metal anode,thus enhancing the interfacial stability.As a result,cell composed of TPU-HNTs-LiFSI-PE exhibits a smaller increase in interfacial resistance of solid electrolyte interphase(SEI) with a distinct decrease in charge-transfer resistance during cycling.Li|Li symmetric cell with TPU-HNTs-LiFSI-PE could keep its stable overpotential profile for nearly 1300 h with a low hysteresis of approximately39 mV at a current density of 0.1 mA cm~(-2),while a sudden voltage rise with internal cell impedance-surge signals was observed within 600 h for cell composed of TPU-HNTs-LiTFSI-PE.The initial capacities of NCMITPU-HNTs-LiTFSIPEILi and NCMITPU-HNTs-LiFSI-PEILi cells were 149 and 114 mAh g~(-1),with capacity retention rates of 83.52% and89.99% after 300 cycles at 0.5 C,respectively.This study provides a valuable guideline for designing flexible SPCE,which shows great application prospect in the practice of ASSLB.  相似文献   
3.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
4.
The transparent Er3+-Yb3+-doped fluoro-aluminosilicate glass-ceramic (GC) was prepared by melt-quenching. The crystal phase, morphology, and up-conversion (UC) luminescence of as-produced GC were characterized by X-ray diffraction, scanning electron microscopy, and fluorescence spectrophotometry, respectively. The results show that BaYF5 nanocrystals were uniformly distributed in the glass matrix of the as-produced GC. When the as-produced GC was subjected to heat treatment, the crystallinity was increased, but the crystal identity remains unchanged. Such heat-treatment doubled the intensity of the UC luminescence, and this enhancement was ascribed to the increased incorporation of both Er3+ and Yb3+ ions into the lower phonon energy environment of BaYF5 nanocrystals. Furthermore, the heat-treated GC was stable against further crystallization, and consequently its UC luminescence was stable at the application temperature. The heat-treated GC was found to possess an outstanding temperature-sensing capability.  相似文献   
5.
A series of novel branched sulfonated polyimide (bSPI-x) membranes with 8% branched degree are developed for application in vanadium redox flow battery (VRFB). The sulfonation degrees of bSPI-x membranes are precisely regulated for obtaining excellent comprehensive performance. Among all bSPI-x membranes, the bSPI-50 membrane shows strong vanadium permeability resistance, which is as 8 times as that of commercial Nafion 212 membrane. At the same time, the bSPI-50 membrane has remarkable proton selectivity, which is four times as high as that of Nafion 212 membrane. The bSPI-50 membrane possesses slower self-discharge speed than Nafion 212 membrane. Furthermore, the bSPI-50 membrane achieves stable VRFB efficiencies during 200-time charge-discharge cycles at 120–180 mA cm?2. Simultaneously, the bSPI-50 membrane exhibits excellent capacity retention compared with Nafion 212 membrane. All results imply that the bSPI-50 membrane possesses good application prospect as a promising alternative separator of VRFB.  相似文献   
6.
陈湉湉  邓嵘 《包装工程》2022,43(12):183-191, 198
目的 从设计事理学视角,探讨儿童情感陪伴玩具的设计方法。方法 通过社会调研结合理论分析,提炼7~12岁城市留守儿童情感陪伴玩具中“事”的各外部因素与内部因素,建立合理的儿童情感陪伴玩具设计模型及评价体系。运用案例分析法,结合儿童情感陪伴玩具设计案例与实践,验证设计事理学在实际儿童情感陪伴玩具设计中的应用价值。结论 探索儿童情感陪伴玩具的设计路径,以Combot——具有情感陪伴与寓教于乐功能的儿童情感陪伴玩具为实践案例,证明了基于设计事理学的儿童情感陪伴玩具设计方法是有效可行的,可有效指导儿童玩具设计,满足父母与孩子的情感需求,促进儿童健康成长。  相似文献   
7.
Fe(III) ion can strongly inhibit the sulphidation amine flotation of smithsonite. However, its modification mechanism on smithsonite surface is still obscure. In this work, a systematic study of the modification of Fe(III) ion on smithsonite (1 0 1) surface was performed using DFT calculation. The optimal number of H2O ligands for Fe(III) ion hydrates in aqueous conditions was probed, and [Fe(OH)2(H2O)4]+ and [Fe(OH)4]? were identified as the major modification species, then their adsorption and bonding mechanisms were further revealed by analyzing the frontier orbitals, density of state, Mulliken population, and electron density. The calculated adsorption structures were consistent with the former experiment, and we found the O site that bonded to the C atom on smithsonite surface was the most favorable position for [Fe(OH)2(H2O)4]+ and [Fe(OH)4]? adsorptions. Besides, their adsorption mechanisms on smithsonite surface were principally due to the combined effect of FeO bond and hydrogen bonding. Simultaneously, hydrogen bonding greatly enhanced the stability of the adsorption structures. Moreover, the dominant orbital contribution for the bonding of FeO was primarily due to the orbital hybridization between Fe 3d and O 2p orbitals. This work can help in deeper understanding of the depression of Fe(III) ion on the sulphidation amine flotation of smithsonite.  相似文献   
8.
Lithium alanate (LiAlH4) is a material that can be potentially used for solid-state hydrogen storage due to its high hydrogen content (10.5 wt%). Nevertheless, a high desorption temperature, slow desorption kinetic, and irreversibility have restricted the application of LiAlH4 as a solid-state hydrogen storage material. Hence, to lower the decomposition temperature and to boost the dehydrogenation kinetic, in this study, we applied K2NiF6 as an additive to LiAlH4. The addition of K2NiF6 showed an excellent improvement of the LiAlH4 dehydrogenation properties. After adding 10 wt% K2NiF6, the initial decomposition temperature of LiAlH4 within the first two dehydrogenation steps was lowered to 90 °C and 156 °C, respectively, that is 50 °C and 27 °C lower than that of the аs-milled LiAlH4. In terms of dehydrogenation kinetics, the dehydrogenation rate of K2NiF6-doped LiAlH4 sample was significantly higher as compared to аs-milled LiAlH4. The K2NiF6-doped LiAlH4 sample can release 3.07 wt% hydrogen within 90 min, while the milled LiAlH4 merely release 0.19 wt% hydrogen during the same period. According to the Arrhenius plot, the apparent activation energies for the desorption process of K2NiF6-doped LiAlH4 are 75.0 kJ/mol for the first stage and 88.0 kJ/mol for the second stage. These activation energies are lower compared to the undoped LiAlH4. The morphology study showed that the LiAlH4 particles become smaller and less agglomerated when K2NiF6 is added. The in situ formation of new phases of AlNi and LiF during the dehydrogenation process, as well as a reduction in particle size, is believed to be essential contributors in improving the LiAlH4 dehydrogenation characteristics.  相似文献   
9.
This article proposes an active balancer, which features bidirectional charge shuttling and adaptive equalization current control, to fast counterbalance the state of charge (SOC) of cells in a lithium-ion battery (LIB) string. The power circuit consists of certain bidirectional buck-boost converters to transfer energy among the different cells back and forth. Owing to the characterization of the open-circuit voltage (OCV) vs SOC in LIB being relatively smooth near the SOC middle range, the SOC-inspected balance strategy can achieve more precise and efficient equilibrium than the voltage-based control. Accordingly, a compensated OCV-based SOC estimation is put forward to take into account the discrepancy of SOC estimation. Besides, the varied-duty-cycle (VDC) and curve-fitting modulation (CFM) methods are devised herein to tackle the problems of slow equalization rate and low balance efficacy, which arise from the diminution in balancing current as the SOC difference between the cells decreases in the later duration of equalization especially. The proposed strategies have taken the battery nonlinear characteristic and circuit parameter nonideality into account and can adaptively modulate the duty cycle with the SOC difference to keep balancing current constant throughout the balancing cycle. Simulated and experimental results are given to demonstrate the feasibility and effectiveness of the same prototype constructed. Compared with the fixed duty cycle and the VDC methods, the proposed CFM has the best balancing efficiency of 81.4%, and the balance time is shortened by 27.1% and 18.6%, respectively.  相似文献   
10.
《Ceramics International》2022,48(18):26303-26311
In dental clinics, it is common to perform small fitting adjustments in dentures using a micro-grinding tool after testing them in the patient's mouth. This procedure increases local roughness and can lead to formation of microcracks on the prosthesis surface. This study aimed to investigate the benefits of a post-finishing heat treatment to surface roughness and crack healing and its effect on the flexural strength of lithium disilicate (LD) dental glass-ceramics. Commercially available lithium metasilicate, Li2SiO3, samples were heat treated at 840 °C for 7 min to induce the phase transformation into LD, Li2Si2O5. The LD samples were characterized by X-ray Diffraction, Scanning Electron Microscopy, Vickers hardness, Young’s modulus, and fracture toughness. One of the surfaces of the LD samples was sanded aiming to simulate the denture fitting adjustments performed in the dentist’s laboratory, generating a rough surface, Group 1. Half of the LD samples had their biaxial flexural strength evaluated by the piston-on-three-ball test (P–3B) and the other half were submitted to a second short-term heat treatment (840 °C - 5 min), Group 2, and later assessed by the P–3B. Roughness parameters in both groups were measured by 3D optical profilometry. After the crystallization heat treatment, formation of elongated LD crystals, Li2Si2O5, 35% amorphous phase, and residual Li3PO4 was observed. In addition, the following mechanical property values were obtained: Vickers hardness = 5.8 ± 0.1 GPa, fracture toughness = 2.2 ± 0.1 MPa m1/2, and Young’s modulus = 100.3 ± 0.3 GPa. The samples in Group 1 showed bending strength of 206 ± 30 MPa and the following roughness parameters: Ra = 0.45 ± 0.16 μm, Rz = 22.7 ± 6.7 μm, and PV = 27.7 ± 7.1 μm. In the samples in Group 2, the Ra, Rz and PV roughness parameters were 0.31 ± 0.12 μm, 5.2 ± 2.5 μm, and 9.2 ± 4.7 μm, respectively. With this decrease in roughness, the bending strength increased by 62%, with a mean value of 331 ± 59 MPa. In the need for machine finishing of LD-based glass-ceramic dental prostheses, the use of a second short-term heat treatment at 840 °C for 5 min generates considerable gains in bending strength, increasing the lifecycle of the prosthesis as a result of reduced surface roughness caused by softening of the remaining amorphous phase in the glass-ceramic. These conditions can be adapted to each chemical and crystallographic composition of the glass-ceramic under study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号