首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22763篇
  免费   1373篇
  国内免费   818篇
电工技术   619篇
综合类   1638篇
化学工业   2214篇
金属工艺   5008篇
机械仪表   1591篇
建筑科学   2727篇
矿业工程   544篇
能源动力   1491篇
轻工业   543篇
水利工程   283篇
石油天然气   587篇
武器工业   164篇
无线电   803篇
一般工业技术   3139篇
冶金工业   2481篇
原子能技术   210篇
自动化技术   912篇
  2024年   24篇
  2023年   178篇
  2022年   441篇
  2021年   641篇
  2020年   580篇
  2019年   496篇
  2018年   419篇
  2017年   586篇
  2016年   548篇
  2015年   633篇
  2014年   1313篇
  2013年   1243篇
  2012年   1580篇
  2011年   1970篇
  2010年   1461篇
  2009年   1417篇
  2008年   1183篇
  2007年   1487篇
  2006年   1336篇
  2005年   1114篇
  2004年   923篇
  2003年   873篇
  2002年   776篇
  2001年   689篇
  2000年   569篇
  1999年   507篇
  1998年   395篇
  1997年   323篇
  1996年   277篇
  1995年   267篇
  1994年   194篇
  1993年   125篇
  1992年   100篇
  1991年   77篇
  1990年   57篇
  1989年   55篇
  1988年   27篇
  1987年   19篇
  1986年   9篇
  1985年   4篇
  1984年   10篇
  1983年   13篇
  1982年   3篇
  1981年   3篇
  1980年   6篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
1.
Fiber production from inorganic industrial solid wastes is an effective waste management strategy. Because of cost considerations, most enterprises generally use local solid wastes as raw materials to produce fibers. In this study, we explored the feasibility of producing fibers using fly ash and magnesium slag. The results show that the melting temperature of the blends composed of fly ash, magnesium slag, and a small amount of calcined dolomite first decreased and then increased with an increase in acidity coefficient (Mk) from 1.0 to 2.4. The samples could form a eutectic system in the Mk range of 1.4–1.8, and therefore have a relatively low melting temperature in this Mk range. Fly ash could react with magnesium slag and calcined dolomite to form akermanite, gehlenite-magnesium, and anorthite at temperatures close to the melting temperature; therefore, these crystalline phases were the main reaction products formed in the samples with Mk values lower than 1.80. Anorthite reacted further with some Na-containing and Si-containing spieces to produce labradorite. Thus, the content of anorthite and labradorite rapidly increased and they became the major crystal phases in the blend samples with Mk values greater than 1.80. MAS-NMR spectroscopic analysis revealed that the network structure of the melts depended on the ratio of bridging oxygen to non-bridging oxygen; a high ratio of bridging oxygen to non-bridging oxygen could lead to the formation of a dense network structure in the melt. The blends of fly ash and magnesium slag can be used to produce wool fibers and continuous fibers. In addition, the suitable temperature ranges for the production of both types of fibers were determined. The drawing temperature for continuous fiber production depended on the degree of polymerization and structure of the melt.  相似文献   
2.
The microstructure and chemical compositions of the solid solution-treated Mg-3Nd-1Li-0.2Zn alloy were characterized using optical microscope,scanning electron microscope(SEM),transmission electron microscope(TEM),electron probe micro-analyzer(EPMA)and X-ray photoelectron spectroscopy(XPS).The corrosion behaviour of the alloy was investigated via electrochemical polarization,electrochemical impedance spectroscopy(EIS),hydrogen evolution test and scanning Kelvin probe(SKP).The results showed that the microstructure of the as-extruded Mg-3Nd-1Li-0.2Zn alloy contained α-Mg matrix and nanometric second phase Mg41 Nd5.The grain size of the alloy increased significantly with the increase in the heat-treatment duration,whereas the volume fraction of the second phase decreased after the solid solution treatment.The surface film was composed of oxides(Nd2O3,MgO,Li2O and ZnO)and carbonates(MgCO3 and Li2CO3),in addition to Nd.The as-extruded alloy exhibited the best corrosion resistance after an initial soaking of 10 min,whereas the alloy with 4h-solution-treatment possessed the lowest corrosion rate after a longer immersion(1 h).This can be attributed to the formation of Nd-containing oxide film on the alloys and a dense corrosion product layer.The dealloying corrosion of the second phase was related to the anodic Mg41Nd5 with a more negative Volta potential relative to α-Mg phase.The preferential corrosion of Mg41Nd5 is proven by in-situ observation and SEM.The solid solution treatment of Mg-3Nd-1Li-0.2Zn alloy led to a shift in corrosion type from pitting corrosion to uniform corrosion under long-term exposure.  相似文献   
3.
The present work was focused on the corrosion properties and contact resistance behavior of poly(orthophenlyenediamine) (PoPD) coating on 316L SS bipolar plates. To reduce the corrosion rate and increase the interfacial conductivity of 316L SS bipolar plates, PoPD coating was deposited using an electropolymerization technique by the various monomer concentration of orthophenlyenediamine (oPD) on its surface. The presence of 1, 2, 4, 5- tetra substituted benzene nuclei of phenazine units in the polymer coating was confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy analysis has confirmed the (%) of chemical composition in PoPD coating. The results of scanning electron microscopy analysis revealed that the uniform and compact coating with complete cover on 316L SS. The corrosion properties were investigated in 0.5 M H2SO4 and 2 ppm HF solution at 80 °C. The polarization test results showed that the PoPD coating reduced the corrosion current density both in the PEMFC anode and cathode environments. The charge transfer resistance values were in the order of 316L SS ? 0.02 M PoPD ? 0.06 M PoPD ? 0.04 M PoPD. A very low interfacial contact resistance and good adhesion strength was observed for 0.04 M PoPD coating. The higher contact angle of 0.04 M PoPD coating explained the hydrophobic property and more benefit of water management in the PEMFC environment. The results of the analysis of total metal ion releases clearly explained that the low level of metal ions released for 0.04 M PoPD coating. The overall studies revealed the PoPD coating with optimized 0.04 M oPD concentration showed best performance and provided more anodic protection to 316L SS bipolar plates.  相似文献   
4.
The synthesized novel metal oxides YxCeyRuzO4 (x = 1.5, y = 0.84, z = 0.04) which was produced by the sol-gel method was used as a support for Cu active metal on the surface of a microchannel plate reactor in the methanol steam reforming (MSR) process. The prepared catalysts were characterized by X-ray powder diffraction (XRD), BET surface area analysis (SBET), energy-dispersive X-ray analysis (EDX), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), temperature-programmed desorption (NH3-TPD), and temperature-programmed reduction (H2-TPR). High methanol conversion (99.5%) and H2 selectivity (98.7%) and low CO selectivity (1.4%) were achieved for Cu/YxCeyRuzO4 coated microchannel reactor at 250 °C. FE-SEM images and TGA curve of the spent catalyst displayed no coke formation on the surface of the catalyst after 32 h on stream at 300 °C. The low reduction temperature of Cu, high BET surface area, and high pore volume of the catalyst are considered imperative factors that cause a better dispersion of copper on the Y1.5Ce0.84Ru0.04O4 support.  相似文献   
5.
This study aims to improve the performances of a solar still single slope using metal oxide nanofluid (Al2O3–water, Cu2O–water, and TiO2–water). The numerical study was carried out for the climatic conditions of Agadir, Morocco, with different concentrations of nanofluids inside a basin equipped with an absorber plate with two different absorptivities. The numerical study is based on thermal balance equations applied on different solar system components and solved using the Runge Kutta method. The numerical model is validated by comparing our results with the literature available data. A comparison study of the effect of these nanofluids on solar still productivity is done. The results show that the productivity of the solar still using nanoparticles Cu2O, TiO2, and Al2O3 are 7.38, 7.1, and 7.064 kg m−2 day−1, respectively. It is obtained that the maximum efficiency of the solar still is found to be 55.27% by using cuprous oxide nanoparticles. Furthermore, an enhancement in solar still productivity of 6.36%, 19.54%, and 33.25% is obtained by dispersing 1%, 3%, and 5% volume fraction of Cu2O nanoparticles in pure water, respectively compared to the conventional solar. Moreover, the impact of the absorptivity of the absorber plate on the solar still effectiveness is investigated. Two types of coatings are considered to change the absorber plate absorptivity. The results indicate that the efficiencies of the solar system are 58.81% and 51.77% using an absorber plate with 0.95 and 0.85 of absorptivity, respectively.  相似文献   
6.
《Ceramics International》2022,48(16):22699-22711
An integrated experimental and thermodynamic modeling study of the phase equilibria in the ‘CuO0.5’-MgO-SiO2 system in equilibrium with liquid Cu metal has been undertaken to better understand the reactions between MgO-based refractories and liquid slag in copper converting and refining processes. New experimental phase equilibria data at 1250–1680 °C were obtained for this system using a high-temperature equilibration of synthetic mixtures with predetermined compositions in silica ampoules or magnesia crucibles, a rapid quenching technique, and electron probe X-ray microanalysis of the equilibrated phase compositions. The system has been shown to contain primary phase fields of cristobalite (SiO2), tridymite (SiO2), pyroxene/protoenstatite (MgSiO3), olivine/forsterite (Mg2SiO4), periclase (MgO), and cuprite (Cu2O). Three regions of 2-liquid immiscibility were found—two in the high-silica range of compositions above the cristobalite primary phase field (close to ‘CuO0.5’-SiO2 and MgO–SiO2 binaries) and one in the low-SiO2, high-‘CuO0.5’ compositional region above the periclase and olivine phase fields. The results obtained in this study indicate that silica in high-copper refining slags likely led to olivine and pyroxene phase formation, increased solubility of MgO in liquid slag, and decline in the performance of MgO-based refractories. New experimental data were used in the development of a thermodynamic database describing this pseudo-ternary system.  相似文献   
7.
MgH2 is considered as a promising hydrogen storage material for on-board applications. In order to improve hydrogen storage properties of MgH2, the amorphous TiMgVNi3-doped MgH2 is prepared by ball milling under hydrogen atmosphere. It is found that the catalytic (Ti,V)H2 and Mg2NiH4 nanoparticles are in situ formed after activation. As a result, the amorphous TiMgVNi3-doped MgH2 exhibits enhanced dehydrogenation kinetics (the activation energy for hydrogen desorption is 94.4 kJ mol?1 H2) and superior cycle durability (the capacity retention rate is up to 92% after 50 cycles). These results demonstrate that the in situ formation of highly dispersed catalytic nanoparticles from an amorphous phase is an effective pathway to enhance hydrogen storage properties of MgH2.  相似文献   
8.
9.
Minimizing entropy generation is a technique that helps improve the effectiveness of real processes by studying the associated irreversibility of system performance of nanofluid. This study examines the entropy generation analysis of electromagnetohydrodynamic radiative Casson flow induced by a stretching Riga plate in a non-Darcian porous medium under the influence of internal energy change, Arrhenius activation energy, chemical reaction, and melting heat transfer. The thermophysical features of the fluid are assumed constant in most of the literature. However, this current research bridges this gap by considering viscosity, conductivity, and diffusivity as temperature-dependent variables. Also, the exponential decaying Grinberg term is used as a resistive force in this investigation due to the electromagnetic properties of the Riga plate in the momentum conservation equation. Some suitable dimensionless variables are introduced to remodel the transport equations into unitless ones and then solved numerically by employing Galerkin Weighted Residual Method. Analyses reveal that the Casson parameter declines the fluid velocity, while the existence of the melting parameter has the opposite effect. Also, this article includes some future recommendations.  相似文献   
10.
研究了3种微通道板基底羟基化的方法,测量了羟基化处理后微通道板基底表面水接触角及通道端面的形貌变化,分析了各种方法中微通道板基底的亲水性和腐蚀情况。实验结果表明:氨水双氧水溶液对基体表面的亲水性能提升不大,NaOH溶液对基体有腐蚀作用,经食人鱼溶液处理的基体表面亲水性明显提高且无腐蚀作用。研究了微通道板在食人鱼溶液中的浸泡时间和浸泡温度对表面亲水性的影响。结果表明:随着浸泡温度的增加,微通道板表面水接触角先减小后增大,当温度为80℃时达到极小值,浸泡时间对微通道板表面的亲水性影响不大。最终确定了微通道板表面羟基化工艺:浸泡温度为80℃,静置时间为20~60 min。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号