首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62087篇
  免费   7460篇
  国内免费   4821篇
电工技术   3236篇
技术理论   1篇
综合类   6662篇
化学工业   11889篇
金属工艺   7042篇
机械仪表   3335篇
建筑科学   5902篇
矿业工程   1167篇
能源动力   1512篇
轻工业   2560篇
水利工程   626篇
石油天然气   1217篇
武器工业   886篇
无线电   4156篇
一般工业技术   13182篇
冶金工业   1713篇
原子能技术   283篇
自动化技术   8999篇
  2024年   148篇
  2023年   886篇
  2022年   1520篇
  2021年   2028篇
  2020年   2061篇
  2019年   1993篇
  2018年   1835篇
  2017年   2452篇
  2016年   2497篇
  2015年   2626篇
  2014年   3549篇
  2013年   3937篇
  2012年   4473篇
  2011年   4764篇
  2010年   3782篇
  2009年   4121篇
  2008年   3465篇
  2007年   4394篇
  2006年   3924篇
  2005年   3293篇
  2004年   2664篇
  2003年   2313篇
  2002年   1930篇
  2001年   1707篇
  2000年   1427篇
  1999年   1162篇
  1998年   949篇
  1997年   822篇
  1996年   711篇
  1995年   644篇
  1994年   534篇
  1993年   456篇
  1992年   322篇
  1991年   255篇
  1990年   190篇
  1989年   130篇
  1988年   103篇
  1987年   66篇
  1986年   29篇
  1985年   33篇
  1984年   32篇
  1983年   25篇
  1982年   22篇
  1981年   12篇
  1980年   21篇
  1979年   14篇
  1978年   6篇
  1977年   8篇
  1976年   6篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Fiber production from inorganic industrial solid wastes is an effective waste management strategy. Because of cost considerations, most enterprises generally use local solid wastes as raw materials to produce fibers. In this study, we explored the feasibility of producing fibers using fly ash and magnesium slag. The results show that the melting temperature of the blends composed of fly ash, magnesium slag, and a small amount of calcined dolomite first decreased and then increased with an increase in acidity coefficient (Mk) from 1.0 to 2.4. The samples could form a eutectic system in the Mk range of 1.4–1.8, and therefore have a relatively low melting temperature in this Mk range. Fly ash could react with magnesium slag and calcined dolomite to form akermanite, gehlenite-magnesium, and anorthite at temperatures close to the melting temperature; therefore, these crystalline phases were the main reaction products formed in the samples with Mk values lower than 1.80. Anorthite reacted further with some Na-containing and Si-containing spieces to produce labradorite. Thus, the content of anorthite and labradorite rapidly increased and they became the major crystal phases in the blend samples with Mk values greater than 1.80. MAS-NMR spectroscopic analysis revealed that the network structure of the melts depended on the ratio of bridging oxygen to non-bridging oxygen; a high ratio of bridging oxygen to non-bridging oxygen could lead to the formation of a dense network structure in the melt. The blends of fly ash and magnesium slag can be used to produce wool fibers and continuous fibers. In addition, the suitable temperature ranges for the production of both types of fibers were determined. The drawing temperature for continuous fiber production depended on the degree of polymerization and structure of the melt.  相似文献   
2.
This paper focuses on the configuration design of flexure hinges with a prescribed compliance matrix and preset rotational center position. A new method for the topology optimization of flexure hinges is proposed based on the adaptive spring model and stress constraint. The hinge optimization model is formulated by maximizing the bending displacement with a spring while optimizing the compliance matrix to a prescribed value. To avoid numerical instability, an artificial spring is used as an auxiliary calculation, and a new strategy is developed for adaptively adjusting the spring stiffness according to the prescribed compliance matrix. The maximum stress of flexure hinge is limited by using a normalized P-norm of the effective von Mises stress, and a position constraint of rotational center is proposed to predetermine the position of the rotational center. In addition, to reduce the error of the stress measurement, a simple but effective filtering method is presented to obtain a complete black-and-white design. Numerical examples are used to verify the proposed method. Topology results show that the obtained flexure hinges have the prescribed compliance matrix and preset rotational center position while also meeting the stress requirements.  相似文献   
3.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
4.
Diamond-like carbon (DLC) possesses brilliant and excellent properties, including excellent corrosion resistance as well as outstanding wear resistance. Ni and B co-doped DLC films were deposited on AZ91D magnesium alloy by electrodeposition under mild conditions (300 V and 25°C). Uniform and dense morphology of co-doped DLC films were observed, and Ni and B were uniformly incorporated into the carbon-based films. Among all the electrodeposits, the appearance of D and G peaks near 1330 and 1570 cm−1 revealed that the as-deposited films were typical DLC films. As the addition of Ni was increased to 0.05 g, the highest microindentation hardness, the lowest friction coefficient, and wear loss were achieved to be 164.5 HV, 0.3, and 0.6 × 10−5 kg/m, respectively. The amorphous carbon films fabricated at 0.05 g Ni had the lowest corrosion current density and the most positive corrosion potential, which was mainly due to the small and dense granular structure effectively hindering the penetration of corrosion media.  相似文献   
5.
The construction and examination of meso-structural finite element models of a Chemical-Vapor-Infiltrated (CVI) C/SiC composite is carried out based on X-ray microtomography digital images (IB-FEM). The accurate meso-structural features of the C/SiC composites, which are consisted of carbon fiber tows and CVI-SiC matrix, in particular the cavity defects, are reconstructed. With the IB-FEM, the damage evolution and fracture behaviors of the C/SiC composite are investigated. At the same time, an in situ tensile test is applied to the C/SiC composite under a CT real-time quantitative imaging system, aiming to investigate the damage and failure features of the material as well as to verify the IB-FEM. The IB-FEM results indicate that material damage initially occur at the defects, followed by propagating toward the fiber-tow/SiC-matrix interfaces, ultimately, combined into macro-cracks, which is in good agreement with the in situ CT experiment results.  相似文献   
6.
《Ceramics International》2021,47(21):29681-29687
Inorganic piezoelectric ceramic composite is the potential sensing element for long-term structural health monitoring due to its excellent durability and compatibility. In this study, a Ceramicrete-based piezoelectric composite is proposed preliminarily, in which the magnesium potassium phosphate cement is used as the matrix and the lead zirconate titanate particle is utilized as the functional phase. Piezoelectric properties test and microstructure analysis are performed to evaluate the testing samples. Results show that the piezoelectric performance of the composite increase with the increase of piezoelectric ceramic particle size. The value of the piezoelectric strain factor (d33) can reach 83.8 pC/N, while the corresponding piezoelectric voltage factor (g33) is 50.1 × 10-3 V•m/N at the 50th day after polarization. Microstructure analysis illustrates that the interfacial transition zone (ITZ) between the matrix and the particles is dense. Moreover, the influence of aging on the composite is attributed to the continuous hydration after polarization. It indicates that the composites have a higher piezoelectric performance, which can be regarded as a promising sensing element material.  相似文献   
7.
All-solid-state lithium batteries(ASSLB) are promising candidates for next-generation energy storage devices.Nevertheless,the large-scale commercial application of high energy density AS S LB with the polymer electrolyte still faces challenges.In this study,a thin solid polymer composite electrolyte(SPCE) is prepared through a facile and cost-effective strategy with an infiltration of thermoplastic polyurethane(TPU),lithium salt(LiTFSI or LiFSI),and halloysite nanotubes(HNTs) in a porous framework of polyethylene separator(PE)(TPU-HNTs-LiTFSI-PE or TPU-HNTs-LiFSI-PE).The composition,electrochemical performance,and especially the effect of anions(TFSI~-and FSI~-) on cycling performance are investigated.The results reveal that the flexible TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE with a thickness of 34 μm exhibit wide electrochemical windows of 4.9 and 5.1 V(vs.Li+/Li) at 60℃,respectively.Reduction in FSI~-tends to form more LiF and sulfur compounds at the interface between TPU-HNTs-LiFSI-PE and Li metal anode,thus enhancing the interfacial stability.As a result,cell composed of TPU-HNTs-LiFSI-PE exhibits a smaller increase in interfacial resistance of solid electrolyte interphase(SEI) with a distinct decrease in charge-transfer resistance during cycling.Li|Li symmetric cell with TPU-HNTs-LiFSI-PE could keep its stable overpotential profile for nearly 1300 h with a low hysteresis of approximately39 mV at a current density of 0.1 mA cm~(-2),while a sudden voltage rise with internal cell impedance-surge signals was observed within 600 h for cell composed of TPU-HNTs-LiTFSI-PE.The initial capacities of NCMITPU-HNTs-LiTFSIPEILi and NCMITPU-HNTs-LiFSI-PEILi cells were 149 and 114 mAh g~(-1),with capacity retention rates of 83.52% and89.99% after 300 cycles at 0.5 C,respectively.This study provides a valuable guideline for designing flexible SPCE,which shows great application prospect in the practice of ASSLB.  相似文献   
8.
9.
To advance organ-on-a-chip development and other areas befitting from physiologically-relevant biomembranes,a microfluidic platform is presented for synthesis of biomembranes during gelation and investigation into their role as extracellular matrix supports.In this work,high-throughput studies of collagen,chitosan,and collagen-chitosan hybrid biomembranes were carried out to characterize and compare key properties as a function of the applied hydrodynamic conditions during gelation.Specifically,depending on the biopolymer material used,varying flow conditions during biomembrane gelation caused width,uniformity,and swelling ratio to be differently affected and controllable.Finally,cell viability studies of seeded fibroblasts were conducted,thus showing the potential for biological applications.  相似文献   
10.
The microstructure and chemical compositions of the solid solution-treated Mg-3Nd-1Li-0.2Zn alloy were characterized using optical microscope,scanning electron microscope(SEM),transmission electron microscope(TEM),electron probe micro-analyzer(EPMA)and X-ray photoelectron spectroscopy(XPS).The corrosion behaviour of the alloy was investigated via electrochemical polarization,electrochemical impedance spectroscopy(EIS),hydrogen evolution test and scanning Kelvin probe(SKP).The results showed that the microstructure of the as-extruded Mg-3Nd-1Li-0.2Zn alloy contained α-Mg matrix and nanometric second phase Mg41 Nd5.The grain size of the alloy increased significantly with the increase in the heat-treatment duration,whereas the volume fraction of the second phase decreased after the solid solution treatment.The surface film was composed of oxides(Nd2O3,MgO,Li2O and ZnO)and carbonates(MgCO3 and Li2CO3),in addition to Nd.The as-extruded alloy exhibited the best corrosion resistance after an initial soaking of 10 min,whereas the alloy with 4h-solution-treatment possessed the lowest corrosion rate after a longer immersion(1 h).This can be attributed to the formation of Nd-containing oxide film on the alloys and a dense corrosion product layer.The dealloying corrosion of the second phase was related to the anodic Mg41Nd5 with a more negative Volta potential relative to α-Mg phase.The preferential corrosion of Mg41Nd5 is proven by in-situ observation and SEM.The solid solution treatment of Mg-3Nd-1Li-0.2Zn alloy led to a shift in corrosion type from pitting corrosion to uniform corrosion under long-term exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号