首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   880篇
  免费   10篇
  国内免费   31篇
电工技术   7篇
综合类   2篇
化学工业   110篇
金属工艺   145篇
机械仪表   26篇
建筑科学   1篇
能源动力   61篇
轻工业   2篇
武器工业   2篇
无线电   82篇
一般工业技术   449篇
冶金工业   15篇
原子能技术   16篇
自动化技术   3篇
  2023年   11篇
  2022年   22篇
  2021年   23篇
  2020年   18篇
  2019年   21篇
  2018年   20篇
  2017年   15篇
  2016年   19篇
  2015年   16篇
  2014年   12篇
  2013年   29篇
  2012年   78篇
  2011年   116篇
  2010年   100篇
  2009年   81篇
  2008年   83篇
  2007年   45篇
  2006年   54篇
  2005年   27篇
  2004年   21篇
  2003年   16篇
  2002年   13篇
  2001年   11篇
  2000年   12篇
  1999年   11篇
  1998年   10篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   11篇
  1993年   3篇
  1992年   3篇
  1989年   2篇
  1988年   1篇
  1982年   1篇
排序方式: 共有921条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(21):31491-31499
In this study, an all-solid-state electrochromic device (ECD) with the structure of ITO/WO3/Al2SiO5/NiOx/ITO was prepared, and the effect of the Al2SiO5 solid electrolyte thicknesses on the opto-electrical performance was investigated. The microstructure and surface morphology were characterized using XRD, SEM and AFM, and the surface morphology and degree of surface looseness demonstrate a significant influence on the opto-electrical properties of ECDs. The charge transfer dynamics at the solid-solid interface were characterized using EIS to obtain an ionic conductivity of 4.637 × 10-8 S/cm. CV, CA and UV–Visible spectra were employed to record the in situ electrochemical and optical properties. The results revealed that the highest optical modulation was 44.58%, the coloring and bleaching times were 14.8 s and 3.7 s, and the highest coloring efficiency was 98.17 cm2/C, which indicates that excellent opto-electrical properties were obtained. When the thickness increases, the degree of surface dense morphology transforms, and the loose morphology is more favorable for ion conductivity, which improves the opto-electrical properties. The results in this study provide insights into the understanding of Al3+-based all-solid-state ECDs, which promote the exploration of new types of Al3+ ionic conductors for all-solid-state ECDs.  相似文献   
2.
A high-throughput approach based on magnetron co-sputtering of alloy libraries is employed to inves-tigate mechanical properties of crystalline and amorphous alloys in a ternary palladium(Pd)-tungsten(W)-silicon(Si)system with the aim to reveal the difference in plastic deformation response and extract the relevant structure-property relationships of the alloys in the system.It was found that in contrast to crystalline alloys,the amorphous ones,i.e.,metallic glasses,exhibited a much smaller fluctuation range in the plasticity parameters(Er2/H and Wp/Wt),indicating a significant difference in the plastic deformation mechanism controlling the mechanical properties for the respective alloys.We propose that the inho-mogeneous deformation of amorphous alloys localized in thin shear bands is responsible for the weaker compositional dependence of both plasticity parameters,while dislocation gliding in crystalline materials is significantly more dependent on the exact structure,thus resulting in a larger scattering range.Based on the representative efficient cluster packing model,a set of composition-dependent atomic structural models is proposed to figure out the structure-property relationships of amorphous alloys in Pd-W-Si alloy system.  相似文献   
3.
Magnetron-based gas aggregation cluster source (GAS) was used to prepare high-purity CuO (cupric oxide) nanoclusters on top of sputter-deposited thin film of tungsten trioxide (WO3). The material was assembled as a conductometric hydrogen gas sensor and its response was tested and evaluated. It is demonstrated that addition of CuO clusters noticeably enhances the sensitivity of the pure WO3 thin film. With an increasing amount of CuO clusters the sensitivity of CuO/WO3 system rises further. When CuO clusters form a sufficiently thick and compact layer, the resistance response is reversed. Based on the sensorial behavior, conventional and near-ambient pressure X-Ray photoemission spectroscopies, and resistivity measurements, we propose that the sensing mechanism is based on the formation of nano-sized p-n junctions in between p-type CuO and n-type WO3. The advantages of the GAS technique for preparing sensorial and/or catalytically active materials are emphasized.  相似文献   
4.
Element doping into the Cu2ZnSn(S,Se)4 (CZTSSe) absorber is an effective method to optimize the performance of thin film solar cells. In this study, the Cu2InxZn1-xSn(S,Se)4 (CIZTSSe) precursor film was deposited by magnetron cosputtering technique using indium (In) and quaternary Cu2ZnSnS4 (CZTS) as targets. Meanwhile, the In content was controlled using the direct current (DC) power on In target (PIn). A single kesterite CIZTSSe alloy was formed by successfully doping a small number of In3+ into the main lattice of CZTSSe. The partial Zn2+ cations were substituted by In3+ ions, resulting in improving properties of CZTSSe films. Morphological analysis showed that large grain CIZTSSe films could be obtained by doping In. The well-distributed, smooth, and dense film was obtained when the PIn was 30 W. The band gap of CIZTSSe could be continuously adjusted from 1.27 to 1.05 eV as PIn increased from 0 to 40 W. In addition, the CIZTSSe alloy thin film at PIn = 30 W exhibited the best p-type conductivity with Hall mobility of 6.87 cm2V?1s?1, which is a potential material as the absorption layer of high-performance solar cells.  相似文献   
5.
《Ceramics International》2021,47(24):34455-34462
Herein, the tungsten trioxide (WO3) nanostructure thin films with different morphologies are firstly fabricated by magnetron sputtering with glancing angle deposition technique (MS-GLAD), followed by the post annealed treatment process in air ambient for 2 h. It is demonstrated that the geometry of MS-GLAD setup, mainly substrate position, played a crucial role in determining the morphology, crystallinity, optical transmittance, and photo-electrochemical (PEC) performance of the WO3 nanostructured thin film. With the different substrate positions in the MS-GLAD system, the WO3 nanorod film layer could be precisely changed to combine an underlying dense layer with a nanorod layer and then nanocolumnar film. Moreover, the prepared samples' chemical composition and work function are studied by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), respectively. The combining WO3 nanostructure produced high PEC efficiency compared to the single layer of the WO3 nanorods sample and the dense WO3 thin film sample. Thus, morphology-controlled nanostructure film based on the MS-GLAD technique in our study provides a simple approach to enhance the photo-anode for PEC water splitting application.  相似文献   
6.
Indium Tin Oxide (ITO) films were prepared, at room temperature, on a fluorphlogopite substrate using magnetron sputtering technology. At various temperatures of 500 °C, 600 °C, 700 °C, 800 °C, and 900 °C, the samples were (had) annealed for 2 h (a 2-h duration). The results showed improvement in the crystalline performance of ITO film at selected annealing temperatures, with a significant reduction in resistivity at 800 °C. The lowest resistivity is 4.08 × 10?4 Ω-cm, which is nearly an order of magnitude lower than the unannealed sample. All samples have an average light transmittance above 85% in the visible light range (400–800 nm), and with increasing annealing temperature, the average light transmittance tends to decrease. Besides, at the sensitive wavelength of 550 nm, the light transmittance is as high as 93.74%. The sheet resistance testing of the sample was through the number of bending times, which revealed that with the increase of the number of bending, the sheet resistance increases. However, after 1200 bending times, the change rate of the sheet resistance remains below 5%. Thus, the ITO film prepared on the flexible fluorphlogopite substrate revealed excellent optical and electrical properties, good flexibility, and improved stability after high-temperature annealing, which guarantees successful application in flexible electronic devices.  相似文献   
7.
Color films are widely used for visual effect as well as for their functional properties. To date, however, synthesizing thin films with desired color remains challenging. In this work, AlN color films are deposited on Si wafers by precise control of the deposition time for different thickness during reactive magnetron sputtering from an Al target in Ar/N2 atmosphere. The thickness, morphology, structure, composition and color index are carefully examined by field emission scanning electron microscopy, atomic force microscopy, grazing incidence X-ray diffraction, X-ray photoelectron spectrometry and colorimeter, respectively. As the film thickness changes from 57 nm to 165 nm, the film exhibits purple, indigo, blue, green, yellow, orange and red in color. These colors repeat in the same order when the thickness goes over 165 nm. Once the thickness exceeds 467 nm, overlapping of colors takes place. The mechanisms are elucidated.  相似文献   
8.
《Ceramics International》2019,45(11):14347-14353
To optimize the process and obtain highly conducting and transparent Aluminum-doped zinc oxide (AZO) thin films, AZO films were deposited on glass substrates at room temperature by Radio-frequency (RF) magnetron sputtering with various Argon flow rates. The influences of Argon flow rate on structure, morphology, optical, electrical and photoluminescence properties of AZO films were investigated by varying the Argon flow rate from 36 to 68 sccm. The best quality AZO film with resistivity 1.39 × 10−3 Ω cm, sheet resistance 8.2 Ω/sq and 84.2% average visible transmittance was prepared at 44 sccm for 30 min. Also, the self-heating effect of target was investigated by preparing AZO films for 10 min and 20 min at 44 sccm, 180 W and 1.0 Pa. The influence of increasing structural quality actually affected by Argon flow rate was more prominent on carrier concentration than mobility. The schematic illustration of microstructural evolution was proposed. The average growth rate of around 60 nm/min demonstrated the self-heating effect of target was weak and could be ignored.  相似文献   
9.
本文详细介绍了用于螺旋线镀金薄膜的磁控溅射设备的研制过程。首先明确了该设备的研制难点,其次对设备的主要组成部分进行了详细的说明,针对设备的几个研制难点提出了解决方案,最后利用研制好的设备进行了膜厚均匀性分析实验。实验表明膜层均匀性良好,达到了预期要求,客户反馈良好。  相似文献   
10.
Comparative study of Ti-C-Ni-Fe, Ti-C-Ni-Al, and Ti-C-Ni-Al/Ti-C-Ni-Fe coatings obtained by electro-spark deposition (ESD) using TiCNi electrode, magnetron sputtering (MS) of TiCNiAl target, and a combination of these methods (MS-ESD) was carried out. The coating microstructures and elemental compositions were studied by means of X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and glow discharge optical emission spectroscopy. The materials were tested in terms of their hardness, elastic modulus, elastic recovery, crack resistance, friction coefficient, and wear resistance under sliding, impact and abrasive conditions, as well as corrosion- and oxidation resistance. The work demonstrated that the utilization of a combined two-step MS-ESD technology permits to obtain bilayers made of Ti-C-Ni-Al/Ti-C-Ni-Fe coatings with improved crack-, wear- and oxidation resistance compared with their single-layered Ti-C-Ni-Al counterparts deposited by MS, and with reduced friction coefficient and enhanced corrosion resistance compared with ESD Ti-C-Ni-Fe coatings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号