首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1290篇
  免费   41篇
  国内免费   17篇
综合类   61篇
化学工业   685篇
金属工艺   13篇
机械仪表   12篇
建筑科学   51篇
矿业工程   3篇
能源动力   79篇
轻工业   262篇
水利工程   6篇
石油天然气   42篇
无线电   20篇
一般工业技术   76篇
冶金工业   5篇
原子能技术   20篇
自动化技术   13篇
  2023年   6篇
  2022年   6篇
  2021年   21篇
  2020年   30篇
  2019年   23篇
  2018年   29篇
  2017年   26篇
  2016年   39篇
  2015年   45篇
  2014年   62篇
  2013年   79篇
  2012年   63篇
  2011年   107篇
  2010年   76篇
  2009年   99篇
  2008年   86篇
  2007年   97篇
  2006年   72篇
  2005年   52篇
  2004年   43篇
  2003年   41篇
  2002年   29篇
  2001年   26篇
  2000年   18篇
  1999年   23篇
  1998年   34篇
  1997年   12篇
  1996年   14篇
  1995年   25篇
  1994年   13篇
  1993年   8篇
  1992年   7篇
  1991年   7篇
  1990年   8篇
  1989年   5篇
  1988年   2篇
  1987年   6篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
排序方式: 共有1348条查询结果,搜索用时 15 毫秒
1.
In the present study we made an effort to deploy eco-friendly synthesized reduced graphene oxide/Lanthanum Alluminate nanocomposites (RGO-LaAlO3) and Lanthanum Alluminate (LaAlO3) as adsorbents to remove dye from the synthetic media. XRD, SEM, BET surface area and EDX have been used to characterize the above-mentioned adsorbents. The impacts of different factors like adsorbent dosage, the concentration of adsorbate and PH on adsorption were studied. The best fit linear and nonlinear equations for the adsorption isotherms and kinetic models had been examined. The sum of the normalized errors and the coefficient of determination were used to determine the best fit model. The experimental data were more aptly fitted for nonlinear forms of isotherms and kinetic equations. Pseudo-second-order and Freundlich isotherm model fits the equilibrium data satisfactorily. Methyl orange (MO) has been used as model dye pollutant and maximum adsorption capacity was found to be 469.7 and 702.2 mg g?1 for LaAlO3 and RGO-LaAlO3, respectively.  相似文献   
2.
Epoxidized methyl esters (EMO) with their high oxirane ring reactivity, acts as a raw material in the synthesis of various industrial chemicals including polymers, stabilizers, plasticizers, glycols, polyols, carbonyl compounds, biolubricants etc. EMO has been generally quantified by the gas chromatography (GC) and high-performance liquid chromatography (HPLC) techniques. Taking into the account of the limitations of these techniques, two qHNMR-based equations have been proposed for the quantification of EMO in the mixture of EMO and methylesters (MO). The validity of the proposed method was determined using standard mixtures of MO and EMO having different molar concentrations. The developed equations have been applied on the samples of EMO prepared from oleic acid in two-step process viz., esterification followed by epoxidation. The qHNMR-based EMO quantification showed acceptable agreement with the results obtained from HPLC analysis.  相似文献   
3.
The technology for transesterification reactions between methyl esters and alcohols is well established by using classical homogeneous alkaline catalysts, which provide high conversion of methyl esters to specialty or nonindigenous esters. However, in certain products where the purity of the esters is of concern, the removal of homogeneous catalysts after the completion of the reaction is a challenge in terms of production cost and water footprint. Therefore, a study to investigate the potential of heterogeneous catalysts was conducted on reactions between methyl palmitate and triethanolamine. The degree of basicity and active surface area of calcium oxide (CaO), zinc oxide (ZnO), and magnesium oxide (MgO) were first characterized by using temperature-programmed desorption (TPD-CO2) and Brunauere–Emmett–Teller (BET), respectively. Among the metal oxides investigated, the CaO catalyst showed the best catalytic activity toward the transesterification process as it gave the highest conversion of methyl palmitate and yielded fatty esteramine compositions similar to the conventional homogeneous catalyst. The optimum transesterification condition by using the CaO catalyst utilized a lower vacuum system of approximately 200 mbar, which could minimize a considerable amount of energy consumption. Furthermore, low CaO dosage of 0.1% was able to give a conversion of 94.5% methyl ester and formed esteramine at 170 °C for 2 h. Therefore, the production of esterquats from esteramine may become more economically feasible through the methyl ester route by using the CaO catalyst, which can be recycled three times.  相似文献   
4.
This work investigates the suspension duration of the nanosized multiwalled carbon nanotubes (MWCNT) and aluminum oxide (Al2O3) in B20, B50 and B70 blends of Jatropha Methyl ester. The MWCNT and aluminum oxide (Al2O3) are added to the fuel blends in the proportions of 50 and 100 pmm separately by ultra sonication. The prepared fuel samples are characterized, and turbidity analysis was done to find the stability rate of nano-additives. The outcomes reveal the maximum stability rate for MWCNT and Al2O3 as 83.3% and 87.03%, respectively, with 50ppm in B20 over a period of eighteen days. A considerable drop in suspension was observed with the 100 ppm MWCNT and Al2O3 biodiesel blends.  相似文献   
5.
《Advanced Powder Technology》2019,30(10):2363-2368
The heterostructure of Cu7.2S4 nanosheets/trisoctahedron Cu2O were successfully constructed on the {3 3 2} high-index facets of Cu2O. The results show that oxygen defects amount of the Cu7.2S4/Cu2O samples are closely related to the thickness of Cu7.2S4 nanosheets. Compared with the unmodified cuprous oxide and the Cu7.2S4/Cu2O modified with thick Cu7.2S4 nanosheets, the Cu7.2S4/Cu2O grafted with 10 nm thickness of Cu7.2S4 show higher oxygen defects content and photocatalytic performance for MO decoloration. UV–VIS DRS and PL detection show that the Cu7.2S4 nanosheets grafting on Cu2O with high-index facets accelerates the charge carrier separation, which results in an elevated degradation properties for MO.  相似文献   
6.
Photovoltaic performances of the bismuth-based solar cells are profoundly affected by the thin film quality of the photoactive layer. Herein, we report on various green solvent system to obtain the highly crystalline, pinhole free and homogeneously methylammonium bismuth iodide (MBI) active layer. The MBI structure prepared with tetrahydrofuran:2-ethoxy-ethanol (THF-2ETO) solvent system was found to have the best film quality. Adding 0.05 M 2ETO as the co-solvent is sufficient to produce high quality BiI3 and MBI thin films. According to the X-ray photoelectron spectroscopy (XPS) analyzes, we have demonstrated that there is an interaction between BiI3 and 2ETO according to the concentration of 2ETO added to the main THF. Our study clarifies the importance of THF-2ETO solvent system that can accelerate the evolution of the Bi-based solar cells by creating high-quality BiI3 or MBI thin films.  相似文献   
7.
In this work, tin dioxide (SnO2) Nanoparticles (NPs) were synthesized through green synthesis, using Citrus × paradisi extract as a stabilizing (capping). The extract concentrations used were 1, 2 and 4% in relation to the aqueous solution. The resulting SnO2 NPs were used for the degradation of Methyl Orange (MO), Methylene Blue (MB) and Rhodamine B (RhB), under both solar and UV radiation. The NPs were characterized via Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM-SAED), the Brunauer-Emmett-Teller (BET) theory, Ultraviolet to Visible spectroscopy (UV–Vis), and Photoluminescence spectroscopy (PL); while the photocatalytic degradation was evaluated using UV-VIS. The results showed that the Citrus × paradisi extract is a good medium for the formation of SnO2 NPs. These NPs presented quasi-spherical morphology, particle sizes of 4–8 nm, with a rutile phase crystalline structure, and with banned gap of 2.69 at 3.28 eV. The NPs had excellent photocatalytic properties under solar radiation, degrading 100% of the OM in 180 min. Furthermore, under UV radiation, 100% degradation of the three dyes was achieved in a short time; 20 min for MO, and 60 min for MB and RhB. Therefore, green synthesis is a feasible medium for the formation of SnO2 NPs with good photocatalytic properties.  相似文献   
8.
A new nanostructured amino-functionalized magnetic bacterial cellulose/activated carbon(BC/AC)composite bioadsorbent(AMBCAC)was prepared for removal of Pb~(2+)and methyl orange(MO)from aqueous solution.The results demonstrated that the equilibrium adsorption capacity(q_e)for Pb~(2+)obviously increases by 2.14 times after introduction of amino groups,the optimum p H for Pb~(2+)and MO adsorption was 5.0 and 3.0,respectively,and the q_eof AMBCAC was 161.78 mg g~(-1)for Pb~(2+)and 83.26 mg g~(-1)for MO under the optimal conditions in this investigation.The kinetics and adsorption isotherm data of the sorption process were well fitted by pseudo-second-order kinetic model and Langmuir isotherm respectively.The thermodynamic results(the Gibbs free energy change G0,the enthalpy change H0,the entropy change S0)implied that the adsorption process of Pb~(2+)and MO was feasible,endothermic and spontaneous in nature.These results support that the AMBCAC composite developed in this work can provide a cheap and efficient way for easy removal of both Pb~(2+)and MO as a promising adsorbent candidate for wastewater treatment.  相似文献   
9.
The transesterification of dimethyl carbonate with phenol to methyl phenyl carbonate (MPC) was investigated on novel catalysts such as titanium diisopropoxide bis(ethyl acetoacetate) and titanium dibutoxide bis(ethyl acetoacetate) in a closed batch reactor at 185–206 °C under high pressure. The produced methanol could be removed efficiently by reactive distillation in order to overcome the equilibrium. The prepared catalysts have higher resistance to water than titanium alkoxides. Phenol conversion as high as 86.4 % with an MPC selectivity of 99.4 % was achieved under optimal reaction conditions within 9 h. Most of the catalytic activity was retained after repeated use for ten times.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号