首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  国内免费   12篇
电工技术   1篇
金属工艺   14篇
能源动力   1篇
一般工业技术   16篇
冶金工业   3篇
自动化技术   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2011年   1篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1995年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
The microsegregation behavior of the Al-4.5 wt%Cu alloy solidified at different cooling rates under the alternating magnetic field(AMF) was investigated.The experimental results showed that the amount of non-equilibrium eutectics in the interdendritic region decreased upon applying the AMF at the same cooling rate.The change in microsegregation could be explained quantificationally by the modifications of dendritic coarsening,solid-state back diffusion and convection in the AMF.The enhanced diffusivity in the solid owing to the AMF was beneficial for the improvement in microsegregation compared to the cases without an AMF.In contrast,the enhanced dendritic coarsening and forced convection in the AMF were found to aggravate the microsegregation level.Considering the contributions of the changes in above factors,an increase in solid diffusivity was found to be primarily responsible for the reduced microsegregation in the AMF.In addition,the microsegregation in the AMF was modeled using the analytical model developed by Voller.The calculated and experimental results were in reasonable agreement.  相似文献   
2.
Microstructure and tensile properties of the laser welded joint of Fe–18.8Mn–0.6C TWIP steel were investigated in this research. The microstructure of fusion zone (FZ) was characterized by means of X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). TEM and in-situ SEM observation were employed to investigate the microstructural evolution and strengthening mechanism of FZ during deformation. The welded joint with a fully austenitic structure was obtained by the laser welding. The granular divorced eutectic phases (Fe, Mn)3C and inclusions formed in the interdendritic regions during the solidification of FZ. The fully austenitic structure and coarse dendrite grains were responsible for the fracture at the weld seam. The FZ exhibited a good combination of strength (e.g. tensile strength up to 1000 MPa) and ductility (e.g. total elongation up to 73%). The microstructural evolution revealed that dislocation slip was the main deformation mechanism at low strains of FZ, while at relatively high strains, mechanical twinning was the domain deformation mechanism and played an important role in improving the strength and ductility as well as the work-hardening effect of FZ.  相似文献   
3.
The Scheil equation was used to model the solidification path, microsegregation of alloying elements in the interdendritic regions, solidification temperature ranges, and to predict the formation of secondary structures and the castability behavior of as-cast superalloys. 4 experimental alloys with pre-specified γ-Ti,Nb,Al,Mo composition containing different Nb, Ti and Al contents were designed using vacuum induction melting furnace. The produced as-cast superalloys were characterized using optical and scanning electron microscopy equipped with energy dispersive X-ray spectrometer and TG–DSC analysis. The experiments showed logic conformity to the modeling results. The model and experiment confirmed the highest segregation behavior for Ti and Nb. All the experimental superalloys indicated the remarkable tendency to form secondary eutectic structures at the last stages of solidification. Superalloy with chemical composition of γ-3.5%Mo,1.8%Al,4%Ti,2.9%Nb showed the shorter solidification temperature range and the best castability.  相似文献   
4.
Phase-field method can be used to describe the complicated morphologies of dendrite growth without explicitly tracking the complex phase boundaries. The influences of initial temperature and initial concentration on dendrite growth are investigated by using the phase-field model coupling concentration field equations. The calculated results indicate that the supersaturation, which is larger in lower initial temperature and lower concentration under isothermal condition, plays a very important role in microsegregation. It is found that the larger supersaturation causes higher degree microsegregation and faster dendrite growth, and the more serious side-branchs occur. The simulated results agree well with the solidification theory.  相似文献   
5.
The fusion zone and heat affected zone (HAZ) microstructures of electron beam welded superalloy 718PLUS™ (718 Plus) that has been newly developed by ATI ALLVAC were examined. The microsegregation pattern during solidification of the fusion zone indicated that while Fe, Co, W, and Cr segregated to the core of the gamma dendrites, Nb, Ti, and Al were extensively rejected into the interdendritic liquid. Electron diffraction and X-ray microanalysis using transmission electron microscopy (TEM) of the fusion zone showed that the major secondary phases that formed from the interdendritic liquid were gamma/MC type carbide eutectic and gamma/Laves eutectic constituents. HAZ microstructure showed partially melted zone immediately adjacent to the fusion zone and intergranular microfissuring associated with resolidified products which suggested that HAZ cracking in this alloy occurred by liquation cracking. Microstructural examination of the HAZ using analytical scanning electron microscope showed resolidified gamma/Laves eutectic on the cracked and backfilled grain boundaries. Fine resolidified MC type carbide particles were also observed in the HAZ. Causes of grain boundary liquation were identified and the solidification of intergranular liquid in the HAZ was discussed.  相似文献   
6.
采用单辊快速凝固技术制备了Mg94.6 Zn4.8 Y0.6合金快速凝固薄带,并通过扫描电镜的背散射及线扫描研究了快速凝固Mg94.6 Zn4.8 Y0.6合金薄带的显微偏析。结菜表明,由于溶质截流,单辊快速凝固Mg94.6 Zn4.8 Y0.6合金薄带为过饱和单相α—Mg固溶体的蜂窝状组织,Mg、Zn和Y宏观分布比较均匀。但在薄带厚度方向上存在偏析,在晶内也存在显微偏析,偏析形成是由于从辊面到自由面凝固速度的差异及溶质传输和晶格结构造成的,其中Zn元素偏析最大,Y元素次之,Mg元素最小。  相似文献   
7.
冯科  韩志伟  王勇  罗利华  毛敬华  丁永立 《铸造技术》2006,27(6):625-628,632
基于典型微观控制单元体(通常指二次枝晶臂间距半长)内的溶质质量守恒关系,建立了适用于枝晶凝固方式的二元共晶/包晶合金微观偏析半解析数学模型,模型中充分考虑了固相反向扩散和枝晶结构粗化对液相溶质浓度的稀释效果.在引入适当的假设条件下,通过严格的数学推导,获得了模型的完整核心控制方程.在推导过程中应用了标准的粗化模型、二次方形式的固相溶质浓度分布以及抛物线固相生长方式等重要假设.其中,采用精度较高的四阶经典龙格-库塔数值微分方法,并结合具体的冷却条件,对模型的常微分核心控制方程来进行数值计算.为验证所建微观偏析模型的合理性和适用性,针对Al-4.9wt%Cu二元共晶合金进行模拟研究,通过将模型的计算结果与已有的实验测试数据以及其它特点各异的微观偏析半解析数学模型的预测结果进行对比分析,表明建立的微观偏析半解析数学模型具有相对较高的预测精度和能力,其预测结果最为接近于实测值.  相似文献   
8.
连铸坯微观及宏观偏析数学模型的研究进展   总被引:1,自引:0,他引:1  
对连铸坯微观和宏观偏析模型及树枝晶间液相流动的研究进展进行了评述,采用近平衡凝固过程溶质再分配理论并结合连铸传热数学模型对连铸坯微观及宏观偏析的定量解析方法进行了分析。  相似文献   
9.
The squeeze casting of a 2024 Al alloy was carried out to investigate the effect on microsegregation in the alloy of the application of pressure followed by diffusion annealing. The experimental results indicate that an optimum applied pressure followed by an optimum diffusion annealing process can markedly reduce the degree of microsegregation and improve the mechanical properties to a degree that can approach the level of forged 2024 Al alloy.  相似文献   
10.
The effects of different solidification rates after pouring on the microstructures,microsegregation and mechanical properties of cast superalloy K417 G were investigated.Scheil-model was applied to calculate the temperature range of solidification.The casting mould with different casting runners was designed to obtain three different cooling rates.The microstructures were observed and the microsegregation was investigated.Also,high temperature tensile test was performed at 900?C and stress rupture test was performed at 950?C with the stress of 235 MPa.The results showed that the secondary dendrite arm spacing,microsegregation,the size and volume fraction of γ'phase and the size of γ/γ'eutectic increased with decreasing cooling rate,but the volume fraction of γ/γ' eutectic decreased.In the cooling rate range of 1.42?C s~(-1)–0.84?C s~(-1),the cast micro-porosities and carbides varied little,while the volume fraction and size of phase and γ/γ' eutectic played a decisive role on mechanical properties.The specimen with the slowest cooling rate of 0.84?C s~(-1) showed the best comprehensive mechanical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号