首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19940篇
  免费   1878篇
  国内免费   1257篇
电工技术   304篇
综合类   747篇
化学工业   6874篇
金属工艺   3888篇
机械仪表   794篇
建筑科学   454篇
矿业工程   193篇
能源动力   443篇
轻工业   868篇
水利工程   133篇
石油天然气   190篇
武器工业   113篇
无线电   989篇
一般工业技术   5038篇
冶金工业   824篇
原子能技术   119篇
自动化技术   1104篇
  2024年   31篇
  2023年   385篇
  2022年   541篇
  2021年   863篇
  2020年   718篇
  2019年   689篇
  2018年   726篇
  2017年   862篇
  2016年   748篇
  2015年   782篇
  2014年   1264篇
  2013年   1422篇
  2012年   1205篇
  2011年   1854篇
  2010年   1188篇
  2009年   1252篇
  2008年   1212篇
  2007年   1157篇
  2006年   1104篇
  2005年   800篇
  2004年   738篇
  2003年   711篇
  2002年   563篇
  2001年   354篇
  2000年   253篇
  1999年   226篇
  1998年   216篇
  1997年   195篇
  1996年   169篇
  1995年   155篇
  1994年   125篇
  1993年   90篇
  1992年   99篇
  1991年   88篇
  1990年   55篇
  1989年   45篇
  1988年   34篇
  1987年   26篇
  1986年   17篇
  1985年   25篇
  1984年   20篇
  1983年   12篇
  1982年   33篇
  1981年   7篇
  1980年   1篇
  1979年   6篇
  1978年   2篇
  1977年   1篇
  1975年   5篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   
2.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
3.
In this study, blends of the bio-based poly(limonene carbonate) (PLimC) with different commodity polymers are investigated in order to explore the potential of PLimC toward generating more sustainable polymer materials by reducing the amount of petro- or food-based polymers. PLimC is employed as minority component in the blends. Next to the morphology and thermal properties of the blends the impact of PLimC on the mechanical properties of the matrix polymers is studied. The interplay of incompatibility and zero-shear melt viscosity contrast determines the blend morphology, leading for all blends to a dispersed droplet morphology for PLimC. Blends with polymers of similar structure to PLimC (i.e., aliphatic/aromatic polyester) show the best performance with respect to mechanical properties, whereas blends with polystyrene or poly(methyl methacrylate) are too brittle and polyamide 12 blends show very low elongations at break. In blends with Ecoflex (poly(butylene adipate-co-terephthalate)) and Arnitel EM400 (copoly(ether ester)) with poly(butylene terephthalate) hard and polytetrahydrofuran soft segments) a threefold increase in E-modulus can be achieved, while keeping the elongation at break at reasonable high values of ≈200%, making these blends highly interesting for applications.  相似文献   
4.
Microbiologically influenced corrosion induced by bacteria has been studied for many years. Corrosion is known to be sensitive to the presence of microalgae, such as Phaeodactylum tricornutum. However, the life activity of P. tricornutum that influences the general and localized corrosion of carbon steel is not fully understood. The current study uses a combination of immersion tests and electrochemical experiments with a detailed surface characterization to reveal the naturally formed corrosion products with/without the presence of P. tricornutum. The results show that samples suffer from pitting corrosion and the averaged pit depths are approximately 15 μm under a light–dark cycle condition or a 24-h constant light condition. Meanwhile, the corrosion products are mainly comprised of γ-FeOOH and Fe3O4 in a constant light condition. However, γ-FeOOH, Fe3O4, and FeCO3 are found in a light–dark cycle. This study proposes the fundamental mechanisms of the effect of P. tricornutum life activities on the corrosion performance of Q235 carbon steel, to fulfill the knowledge gaps of the presence of microalgae inducing the general and pitting corrosion of carbon steel.  相似文献   
5.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
6.
高熵形状记忆合金是在等原子比NiTi合金的基础上,结合高熵合金的概念,逐渐发展起来的一种新型高温形状记忆合金。近年来,已开发出了综合性能优异的(TiZrHf)50(NiCoCu)50系和(TiZrHf)50(NiCuPd)50系高熵形状记忆合金,引起了广泛的关注和研究兴趣。本文从物相组成、微观组织、马氏体相变行为、形状记忆效应和超弹性等角度出发,综述了高熵形状记忆合金的研究进展,并对高熵形状记忆合金未来的研究重点进行了展望。  相似文献   
7.
《Ceramics International》2021,47(24):34860-34868
Graphene oxide (GO) received a significant attention in the scientific community due to their excellent mechanical properties identifying themselves as an alternative and combinatory to various other metals and composites. Though GO possess excellent strength, it was observed from the literature that graphene oxide consisting of hydroxyl group elements ensue in poor bonding. Thus reduced functional group density (rFGD) graphene is preferred which has an advantage of good bonding, alongside very small quantity as a filler is required to achieve the enhancement equivalent to graphene oxide which forms the novelty of the current work. In current case, 3, 6 and 9 wt% of rFGD is dispersed into E-glass fibre reinforced composite by traditional hand layup technique. The obtained results revealed that, the tensile, flexural and impact strength have shown superior enhancement with 3 and 6 wt% of rGO than neat E-glass epoxy (0 wt% rGO), whereas an asymptotic decrement is noticed at 9 wt% when tested with ASTM standards except for impact strength. The microstructural studies also indicated the proper adhesion and alignment of fibres without any agglomerations corroborate the enhancement of properties. These overall finding supports the suitability of the developed laminates for potential use in structural applications in aerospace industry.  相似文献   
8.
The morphology and microstructure of splats impact the comprehensive capability of a new coating methodology called chelate flame spraying (CFS). This study addresses the quantitative characterization of the spread morphologies of flame sprayed Er2O3 splats directly deposited under different spray conditions on aluminum alloy substrates with a mirror finish. The influence of the in-flight particle temperature and velocity, carrier gas type, and carrier gas ratio on the solidification mechanism of molten droplets was investigated. Image analysis methods were employed to identify single splats from the morphology observed with field-emission scanning electron microscopy (FE-SEM). In addition, Er2O3 films were synthesized on an Al–Mg alloy (A5052) substrate using N2 or O2 as the carrier gas. When O2 was used as the carrier gas, 109-μm-thick films were deposited on the A5052 substrate. The cross-sectional porosity of the films was 3.8%. In contrast, films with 101-μm thickness were synthesized on the A5052 substrate when N2 was used as the carrier gas. The cross-sectional porosity of these films was 13.8%. The results showed that the carrier gas type (N2) and carrier gas ratio had a significant effect on the flattening behavior of the molten droplets. A spraying method combined with multidimensional modes is proposed to control the morphology of the splats.  相似文献   
9.
《Ceramics International》2021,47(23):32915-32926
A novel TiNb fibre with an α-Al2O3 coating was fabricated by cathodic plasma electrolytic deposition (CPED), which has enormous potential for use in intermetallic matrix composites (IMMCs). This study aims to clarify the microstructural evolution of α-Al2O3 coatings on TiNb fibres and to systematically evaluate the mechanical properties of such modified fibres. The results revealed that the CPED process can be divided into three stages as voltage and deposition time increased: gas film formation, spark discharge, and spark fading, where the coating successively underwent local nucleation, uniform deposition, micropore self-sealing, and loose structure formation. The optimum deposition parameters of the deposition voltage of 300–400 V and deposition time of 3–4 min were determined, under which the α-Al2O3 coating combined tightly with the TiNb fibre matrix, micropores were completely self-sealed, and the loose structure and detrimental phase transitions in TiNb were effectively avoided. The fracture strength calculated by the Weibull method suggested that the fracture strength of the modified Al2O3/TiNb fibre was enhanced by more than 30%; this improved strength maintained high stability, benefiting from the intact α-Al2O3 ceramic coating. In particular, the fibre coated at 300 V for 4 min had the highest strength reaching 1620 MPa. The fracture morphology presented marked necking and shear lip characteristics, indicating excellent plasticity.  相似文献   
10.
This paper investigates the influence of suspension characteristics on microstructure and performance of suspensions plasma sprayed (SPS) thermal barrier coatings (TBCs). Five suspensions were produced using various suspension characteristics, namely, type of solvent and solid load content, and the resultant suspensions were utilized to deposit five different TBCs under identical processing conditions. The produced TBCs were evaluated for their performance i.e. thermal conductivity, thermal cyclic fatigue (TCF) and thermal shock (TS) lifetime. This experimental study revealed that the differences in the microstructure of SPS TBCs produced using varied suspensions resulted in a wide-ranging overall TBC performance. All TBCs exhibited thermal conductivity lower than 1 W/(m. K) except water-ethanol mixed suspension produced TBC. The TS lifetime was also affected to a large extent where 10 wt % solid loaded ethanol and 25 wt % solid loaded water suspensions produced TBCs exhibited the highest and the lowest lifetime, respectively. On the contrary, TCF lifetime was not as significantly affected as thermal conductivity and TS lifetime, and all ethanol suspensions showed marginally better TCF lifetime than water and ethanol-water mixed suspensions deposited TBCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号