首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1043篇
  免费   8篇
  国内免费   15篇
电工技术   1篇
综合类   3篇
化学工业   142篇
金属工艺   20篇
机械仪表   5篇
建筑科学   2篇
矿业工程   1篇
能源动力   51篇
轻工业   10篇
无线电   20篇
一般工业技术   798篇
冶金工业   5篇
原子能技术   1篇
自动化技术   7篇
  2023年   5篇
  2022年   19篇
  2021年   28篇
  2020年   12篇
  2019年   12篇
  2018年   13篇
  2017年   19篇
  2016年   9篇
  2015年   18篇
  2014年   19篇
  2013年   20篇
  2012年   13篇
  2011年   110篇
  2010年   207篇
  2009年   206篇
  2008年   147篇
  2007年   143篇
  2006年   29篇
  2005年   10篇
  2004年   4篇
  2003年   13篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1993年   1篇
排序方式: 共有1066条查询结果,搜索用时 17 毫秒
1.
In both developing and industrialized/developed countries, various hazardous/toxic environmental pollutants are entering water bodies from organic and inorganic compounds (heavy metals and specifically dyes). The global population is growing whereas the accessibility of clean, potable and safe drinking water is decreasing, leading to world deterioration in human health and limitation of agricultural and/or economic development. Treatment of water/wastewater (mainly industrial water) via catalytic reduction/degradation of environmental pollutants is extremely critical and is a major concern/issue for public health. Light and/or laser ablation induced photocatalytic processes have attracted much attention during recent years for water treatment due to their good (photo)catalytic efficiencies in the reduction/degradation of organic/inorganic pollutants. Pulsed laser ablation (PLA) is a rather novel catalyst fabrication approach for the generation of nanostructures with special morphologies (nanoparticles (NPs), nanocrystals, nanocomposites, nanowires, etc.) and different compositions (metals, alloys, oxides, core-shell, etc.). Laser ablation in liquid (LAL) is generally considered a quickly growing approach for the synthesis and modification of nanomaterials for practical applications in diverse fields. LAL-synthesized nanomaterials have been identified as attractive nanocatalysts or valuable photocatalysts in (photo)catalytic reduction/degradation reactions. In this review, the laser ablation/irradiation strategies based on LAL are systematically described and the applications of LAL synthesized metal/metal oxide nanocatalysts with highly controlled nanostructures in the degradation/reduction of organic/inorganic water pollutants are highlighted along with their degradation/reduction mechanisms.  相似文献   
2.
《Ceramics International》2021,47(23):32882-32890
Transition metals doping has been proved to be a feasible way for tuning the physical properties on the surface and bulk of nanomaterials and also for the good performance in decontamination of emerging pollutants. In this context, doped samples of zinc tin oxide or zinc stannate nanoparticles (ZTO NPs) by several transition metals were synthesized in order to enhance the optical absorbance with the aims of reducing the band gap and therefore ameliorated their photocatalytic activity. They were characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy, Raman spectroscopy and photoluminescence. The XRD patterns and the microscopic observations showed the formation of spherical nanoparticles with an average size of about 30 nm and highly pure ZTO phase with an inverse spinel structure. The Raman spectra were dominated by bands relatives to the F2g (2) and A1g symmetries modes of inverse spinel structure. The band gap Eg is estimated to be 3.75 eV for the undoped sample, and 3.67, 3.64, 3.78 and 3.21 eV, for 2% Fe, 2% Mg, 2% Gd, and 2% Mn doped ZTO samples, respectively.Furthermore, the undoped ZTO NPs have the intrinsic problem of recombination of photogenerated charge carriers. We have shown that the reduction of the band gap and oxygen vacancies resulting from the doping effect could be a useful tool for trapping and avoid the recombination of electrons coming from photosensitized rhodamine B (RhB) under visible light irradiation. Owing to the structural advantages and low band gap, 2% Mn doped ZTO NPs, with the kinetic rate constants k of 0.024 min−1, show enhanced performance for the elimination of RhB in aqueous solution compared to undoped and other doped ZTO NPs.  相似文献   
3.
One-dimensional porous carbons bearing high surface areas and sufficient heteroatom doped functional-ities are essential for advanced electrochemical energy storage devices, especially for developing free-standing film electrodes. Here we develop a porous, nitrogen-enriched, freestanding hollow carbon nanofiber (PN-FHCF) electrode material via filtration of polypyrrole (PPy) hollow nanofibers formed by in situ self-degraded template-assisted strategy, followed by NH3-assisted carbonization. The PN-FHCF retains the freestanding film morphology that is composed of three-dimensional networks from the entanglement of 1D nanofiber and delivers 3.7-fold increase in specific surface area (592 m2·g-1) com-pared to the carbon without NH3 treatment (FHCF). In spite of the enhanced specific surface area, PN-FHCF still exhibits comparable high content of surface N functionalities (8.8%, atom fraction) to FHCF. Such developed hierarchical porous structure without sacrificing N doping functionalities together enables the achievement of high capacity, high-rate property and good cycling stability when applied as self-supporting anode in lithium-ion batteries, superior to those of FHCF without NH3 treatment.  相似文献   
4.
5.
Abstract

Electrospinning of glass nanofibers, as one of the most important techniques for producing nanofibers, was the focus of the present research. This process was done using a carrying polymer in order to modify all important parameters of the process including the solution parameters, the electrospinning voltage, the electrospinning distance and feeding rate of the solution to achieve a desired nanofiber morphology. The produced nanofibers were pyrolyzed at a high temperature to remove the carrying polymer and the FTIR test approved that it was completely removed. The diameter of nanofibers and other details were investigated using SEM images and it was shown that the produced nanofibers have a finer diameter with an average of 228?nm and standard deviation of 46?nm in comparison to other works that reported 500?nm for these characteristics.  相似文献   
6.
How do scientific ideas become market products? There is probably no single pathway for such transformation. And yet, there are certain similarities in the way how advanced materials evolve from laboratory studies to being used in technology. Common steps in such progress are the enhancement of useful properties, development of the production methods, creation of industrially-relevant modification of the material itself and its fabrication process. The reason in the emergent similarities in the pathway to market is the established relation between materials supplier and the final product manufacturers. A dramatic role in such relations is played by industrial standards. The later can help, but also, if incorrectly developed, can stumble the final product development. We will study the process of commercialisation of graphene, its transformation to commodity and the emerging graphene standardisation efforts.  相似文献   
7.
Advanced protein-based nanomaterials and nanosystems (PNNS) have attracted considerable scientific interest in recent decades due to their potential in bio-applications. Nowadays, the constructed PNNS exhibit different properties for various special applications based on the characteristics of different proteins. Herein, in this review article, a systematic summary and discussion focusing on designing multi-functional PNNS are presented. The latest developments in unique synthesis strategies and detailed classification of PNNS are reviewed. The functions of proteins in PNNS for biomedical applications, such as targeting proteins, carriers, enzymes, and fluorescent indicators, are summarized. Finally, the challenges and forward-looking perspectives of PNNS research are provided.  相似文献   
8.
In this work,we developed a simple strategy to synthesize a carbon material with high nitrogen and rich carbon defects.Our approach polymerized diaminopyridine(DAP) and ammonium persulfate(APS).Following a range of different temperature pyrolysis approaches,the resulting rough surface was shown to exhibit edge defects due to N-doping on graphite carbon.A series of catalysts were evaluated using a variety of characterization techniques and tested for catalytic performance.The catalytic performance of the N-doped carbon material enhanced alongside an increment in carbon defects.The NC-800 catalyst exhibited outstanding catalytic activity and stability in acetylene hydrochlorination(C_2 H_2 GHSV=30 h~(-1),at 220℃,the acetylene conversion rate was 98%),with its stability reaching up to 450 h.Due to NC-800 having a nitrogen content of up to 13.46%,it had the largest specific surface area and a high defect amount,as well as strong C_2 H_2 and HCl adsorption.NC-800 has excellent catalytic activity and stability to reflect its unlimited potential as a carbon material.  相似文献   
9.
Measuring nonlinear optical response of a specific material in a mixture, not only leads to investigate the behavior of a particular component in various circumstances, but also can be a way to select suitable combination and optimum concentration of additives and therefore obtaining the maximum nonlinear optical signals. In this work, by using dual-arm Z-scan technique, the nonlinear refractive index of Disperse Red1 (DR1) organic dye molecules inside the core of prepared polymeric nanocapsules was measured among various materials which prepared nanocapsules were made of them. Then the measured value was compared with nonlinear refractive index of DR1 solved in dichloromethane.  相似文献   
10.
Cerium-based oxide compounds are known for their wide range of applications in catalysis, corrosion prevention, electrochemical cells, photocatalysis, UV absorbers, biomaterials, microelectronics, optical devices, thermal coatings, and glass abrasives. The technological applications of these materials are possible due to a combination of the electronic structure of Ce and the size effects at the nanoscale. In particular, reversible transformation between the Ce(III) and Ce(IV) oxidation states on the surface of cerium oxides is critical to the functionality and potential uses of the materials. In this paper, the main technological applications of cerium-based oxide coatings are reviewed based on the work done to date. Special interest is placed on the emerging trends.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号