首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63382篇
  免费   5223篇
  国内免费   5355篇
电工技术   1138篇
技术理论   1篇
综合类   3077篇
化学工业   8831篇
金属工艺   29907篇
机械仪表   3319篇
建筑科学   1365篇
矿业工程   1151篇
能源动力   1411篇
轻工业   1479篇
水利工程   72篇
石油天然气   864篇
武器工业   825篇
无线电   1650篇
一般工业技术   12017篇
冶金工业   6097篇
原子能技术   469篇
自动化技术   287篇
  2024年   150篇
  2023年   1155篇
  2022年   1864篇
  2021年   2145篇
  2020年   2185篇
  2019年   1712篇
  2018年   1741篇
  2017年   2251篇
  2016年   1764篇
  2015年   2033篇
  2014年   3013篇
  2013年   3295篇
  2012年   3923篇
  2011年   4888篇
  2010年   3639篇
  2009年   3831篇
  2008年   3071篇
  2007年   4296篇
  2006年   4374篇
  2005年   3575篇
  2004年   3135篇
  2003年   2602篇
  2002年   2155篇
  2001年   1930篇
  2000年   1654篇
  1999年   1379篇
  1998年   1080篇
  1997年   975篇
  1996年   929篇
  1995年   711篇
  1994年   617篇
  1993年   453篇
  1992年   421篇
  1991年   271篇
  1990年   244篇
  1989年   206篇
  1988年   108篇
  1987年   37篇
  1986年   26篇
  1985年   9篇
  1984年   21篇
  1983年   13篇
  1982年   24篇
  1981年   17篇
  1980年   8篇
  1978年   9篇
  1976年   6篇
  1975年   3篇
  1959年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
To improve the safety of wet dust removal systems for processing magnesium-based alloys, a new method is proposed for preventing hydrogen generation. In this paper, hydrogen generation by Mg–Zn alloy dust was inhibited with six common metal corrosion inhibitors. The results showed that sodium dodecylbenzene sulfonate was the best hydrogen inhibitor, while CeCl3 enhanced hydrogen precipitation. The film-forming stability of sodium dodecylbenzene sulfonate was tested with different contents, temperatures, Cl? concentrations and perturbation rates. The results showed that this inhibitor formed stable protective films on the surfaces of Mg–Zn alloy particles, and adsorption followed the Langmuir adsorption model.  相似文献   
2.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
3.
Aluminum alloy bipolar plates have unique application potential in proton exchange membrane fuel cell (PEMFC) due to the characteristics of lightweight and low cost. However, extreme susceptibility to corrosion in PEMFC operation condition limits the application. To promote the corrosion resistance of aluminum alloy bipolar plates, a Ni–P/TiNO coating was prepared by electroless plating and closed field unbalanced magnetron sputter ion plating (CFUMSIP) technology on the 6061 Al substrate. The research results show that Ni–P interlayer improves the deposition effect of TiNO outer layer and increase the content of TiN and TiOxNy phases. Compared to Ni–P and TiNO single-layer coatings, the Ni–P/TiNO coating samples exhibited the lowest current density value of (1.10 ± 0.02) × 10?6 A·cm?2 in simulated PEMFC cathode environment. Additionally, potential cyclic polarization measurements were carried out aiming to evaluate the durability of the aluminum alloy bipolar plate during the PEMFC start-up/shut-up process. The results illustrate that the Ni–P/TiNO coating samples exhibit excellent stability and corrosion resistance.  相似文献   
4.
《Ceramics International》2022,48(5):6302-6312
In this study we synthesized Li-rich Li1.2Ni0.13Mn0.54Co0.13O2 (LMNCO) as a composite cathode material through a two-step spray-drying method, using transition metal (TM) acetates and citric acid (CA, as a chelating agent) at various molar ratios and then calcining at various temperatures for various periods of time. This two-step spray-drying method created hierarchical nano/micro-sphere structures of the LMNCO cathode material. The LMNCO cathode exhibited the best electrochemical performance when synthesized with a TM:CA ratio of 3:2, a calcination temperature of 900 °C, and a calcination time of 5 h. This as-prepared LMNCO composite was then modified with polyimide (PI) at various weight ratios (PI/LMNCO = 0.5, 1.0, and 1.5 wt%) to improve its electrochemical properties. Among the various structures, the LMNCO cathode material coated with 1.0 wt% of PI at a layer thickness of approximately 1.88 nm achieved the best initial discharge capacities. This modified electrode also displayed enhanced cycle stability, with over 93.3 and 87.9% of the capacity retained after 30 cycles at 0.1C and 100 cycles at 1C, respectively. In comparison, the capacity retention of the unmodified LMNCO electrode measured under the same conditions was no more than 91.3% at 0.1C and 70.1% at 1C. Thus, surface modification with PI was an effective method for improving the coulombic efficiency, discharge capacity, and long-term cycling performance of the LMNCO cathode. Such PI-coated LMNCO composite cathode materials appear to be potential candidates for use in next-generation high-performance lithium-ion batteries.  相似文献   
5.
Non-noble metal catalyst with high catalytic activity and stability towards oxygen reduction reaction (ORR) is critical for durable bioelectricity generation in air-cathode microbial fuel cells (MFCs). Herein, nitrogen-doped (iron-cobalt alloy)/cobalt/cobalt phosphide/partly-graphitized carbon ((FeCo)/Co/Co2P/NPGC) catalysts are prepared by using cornstalks via a facile method. Carbonization temperature exerts a great effect on catalyst structure and ORR activity. FeCo alloys are in-situ formed in the catalysts above 900 °C, which are considered as the highly-active component in catalyzing ORR. AC-MFC with FeCo/Co/Co2P/NPGC (950 °C) cathode shows the highest power density of 997.74 ± 5 mW m?2, which only declines 8.65% after 90 d operation. The highest Coulombic efficiency (23.3%) and the lowest charge transfer resistance (22.89 Ω) are obtained by FeCo/Co/Co2P/NPGC (950 °C) cathode, indicating that it has a high bio-electrons recycling rate. Highly porous structure (539.50 m2 g?1) can provide the interconnected channels to facilitate the transport of O2. FeCo alloys promote charge transfer and catalytic decomposition of H2O2 to ?OH and ?O2?, which inhibits cathodic biofilm growth to improve ORR durability. Synergies between metallic components (FeCo/Co/Co2P) and N-doped carbon energetically improve the ORR catalytic activity of (FeCo)/Co/Co2P/NPGC catalysts, which have the potential to be widely used as catalysts in MFCs.  相似文献   
6.
A conducting and anticorrosive coating is crucial for the application of metal bipolar plates (BP) in proton exchange membrane fuel cell (PEMFC). In this work, a Ti3C2Tx (T)-carbon black (C)-acrylic epoxy (AE) coating is prepared on 304 stainless steel (SS) with enhanced corrosion resistance and conductivity. The corrosion resistance of the T-C-AE coating is investigated in a 0.5 M H2SO4 solution as compared to the AE, T, and T-AE coatings. The T-C-AE coated 304SS exhibits the strongest corrosion resistance with the most positive corrosion potential and the lowest corrosion current density of 0.00673 μA cm?2 in all the samples, while retaining intact and compact surface morphology with the lowest metal ion dissolution even after immersed for 720 h. The addition of Ti3C2Tx and carbon black into the AE matrix greatly decreases interfacial contact resistance (ICR), and the T-C-AE coating achieves a low ICR of 15.5 mΩ cm?2 under 140 N cm?2 compaction force. The excellent anticorrosion performance is mainly attributed to the physical barrier and the cathodic protection provided by the stacked Ti3C2Tx (MXene) nanosheets in the T-C-AE coating. This eco-friendly, conducting, and anticorrosive T-C-AE coating has a good application prospect on SS BP of PEMFC.  相似文献   
7.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
8.
A class of ruthenium-nickel alloy catalysts featured with nanoporous nanowires (NPNWs) were synthesized by a strategy combining rapid solidification with two-step dealloying. RuNi NPNWs exhibit excellent electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in which the RuNi-2500 NPNWs catalyst shows an OER overpotential of 327 mV to deliver a current density of 10 mA cm?2 and the RuNi-0 NPNWs catalyst requires the overpotential of 69 mV at 10 mA cm?2 showing the best HER activity in alkaline media. Moreover, the RuNi-1500 NPNWs catalyst was used as the bifunctional electrocatalyst in a two-electrode alkaline electrolyzer for water splitting, which exhibits a low cell voltage of 1.553 V and a long-term stability of 24 h at 10 mA cm?2, demonstrating that the RuNi NPNWs catalysts can be considered as promising bifunctional alkaline electrocatalysts.  相似文献   
9.
《Ceramics International》2022,48(6):7885-7896
Al2O3 and honeycomb skeleton-Al2O3 composite coatings on Titanium alloy (Ti–6Al–4V) were prepared by atmospheric plasma spraying. A laser ablation experiment on as-sprayed coatings was performed. In this paper, the laser damage resistance, microstructure, phase composition of Al2O3 coatings were examined. 3D Dimensional Confocal Microscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Energy Dispersive Spectrometry (EDS) characterized the laser damage morphology, microstructure, phase composition, and element analysis, respectively. The influence of the honeycomb skeleton on the laser ablation damage on as-sprayed coatings was investigated by a comparative analysis of the laser damage morphology with different laser ablation times and gas flow. The results show that the honeycomb skeleton raises thermal conductivity and thermal diffusivity. Moreover, a “tower”-like dendrite was generated during the laser irradiation of the composite coating. The honeycomb skeleton refined the structure, suppressed crack propagation, and reduced the influence of gas flow on cracks. Under the same experimental laser ablation parameters, the laser damage area of the honeycomb skeleton-Al2O3 composite coating was smaller than that of the Al2O3 coating. It was demonstrated that the laser damage resistance of the honeycomb skeleton-Al2O3 composite coating was superior to that of the Al2O3 coating.  相似文献   
10.
《Ceramics International》2022,48(13):18238-18245
Zinc oxide nanorods, ZnO NRs, were synthesized on a clean glass and coated with graphene oxide (GO) using spray coating method to enhance the photocatalytic activity in wastewater treatment. The ZnO NRs were synthesized using the solution process synthesis that was optimized using Taguchi method. Several synthesis parameters have been optimized and studied to determine the best synthesis parameter to grow ZnO NRs for the photodegradation of organic contaminants. Field emission scanning electron microscopy (FESEM) with EDX, X-ray diffraction (XRD), Raman, ultraviolet visible near-infrared (UV-VIS-NIR), and photoluminescence (PL) spectroscopies were used to investigate the structural and optical properties of the produced nanorods. FESEM images revealed the vertical growth of ZnO NRs as well as layers of GO covering the ZnO NRs' top surface. The Raman study demonstrates the combination peak of GO and ZnO, hence proving the GO layer's successful coating. After the GO coating, decrease in the bandgap of the synthesized photocatalyst was detected by PL and UV–Vis absorption measurements. Under UVC exposure with treatment time of 6 h, the degradation of MB with ZnO NRs/GO photocatalyst reached a degradation percentage of 97.86%, which is greater than the degradation percentage achieved using pristine ZnO NRs, which is 93.28%. The results validated that the coating of GO enhances the photocatalytic activity of the host material, ZnO NRs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号