首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2218篇
  免费   122篇
  国内免费   119篇
电工技术   35篇
综合类   114篇
化学工业   823篇
金属工艺   617篇
机械仪表   37篇
建筑科学   8篇
矿业工程   48篇
能源动力   91篇
轻工业   4篇
水利工程   3篇
石油天然气   4篇
武器工业   7篇
无线电   105篇
一般工业技术   420篇
冶金工业   117篇
原子能技术   18篇
自动化技术   8篇
  2024年   6篇
  2023年   38篇
  2022年   44篇
  2021年   57篇
  2020年   68篇
  2019年   64篇
  2018年   59篇
  2017年   90篇
  2016年   73篇
  2015年   52篇
  2014年   73篇
  2013年   128篇
  2012年   119篇
  2011年   168篇
  2010年   134篇
  2009年   147篇
  2008年   125篇
  2007年   159篇
  2006年   171篇
  2005年   134篇
  2004年   137篇
  2003年   84篇
  2002年   64篇
  2001年   49篇
  2000年   40篇
  1999年   39篇
  1998年   35篇
  1997年   28篇
  1996年   17篇
  1995年   15篇
  1994年   13篇
  1993年   10篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1974年   1篇
  1951年   1篇
排序方式: 共有2459条查询结果,搜索用时 46 毫秒
1.
2.
对金品位为1.55 g/t的氧化矿采用非氰药剂进行浸金的工艺流程,考察了磨矿细度、药剂DZC浓度和浸出时间对金浸出率的影响。确定该金矿适宜的非氰浸出条件:磨矿细度-74μm含量占69.90%、石灰用量4 000g/t、矿浆液固比为2∶1、浸出药剂DZC浓度0.08%、浸出时间8 h,可获得金的浸出率为93.33%的良好指标。表明该氧化金矿在常温常压下,采用非氰浸出工艺是可行的。  相似文献   
3.
The Fe−Ni−TiO2 nanocomposite coatings were electrodeposited by pulse frequency variation. The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at higher frequencies. By increasing the pulse frequency from 10 to 500 Hz, the iron and TiO2 nanoparticles contentswere increased in expense of nickel content. XRD patterns showed that by increasing the frequency to 500 Hz, an enhancement ofBCC phase was observed and the grain size of deposits was reduced to 35 nm. The microhardness and the surface roughness were increased to 647 HV and 125 nm at 500 Hz due to the grain size reduction and higher incorporation of TiO2 nanoparticles into the Fe−Ni matrix (5.13 wt.%). Moreover, the friction coefficient and wear rate values were decreased by increasing the pulse frequency;while the saturation magnetization and coercivity values of the composite deposits were increased.  相似文献   
4.
Magnesium, as a biodegradable metal, offers great potential for use as a temporary implant material, which dissolves in the course of bone tissue healing. It can sufficiently support the bone and promote the bone healing process. However, the corrosion resistance of magnesium implants must be enhanced before its application in clinical practice. A promising approach of enhancing the corrosion resistance is deposition of bioactive coating, which can reduce the corrosion rate of the implants and promote bone healing. Therefore, a well-designed substrate-coating system allowing a good control of the degradation behavior is highly desirable for tailored implants for specific groups of patients with particular needs. In this contribution, the influence of coating formation conditions on the characteristics of potentiostatically electrodeposited CaP coatings on magnesium substrate was evaluated. Results showed that potential variation led to formation of coatings with the same chemical composition, but very different morphologies. Parameters that mostly influence the coating performance, such as the thickness, uniformity, deposits size, and orientation, varied from produced coating to coating. These characteristics of CaP coatings on magnesium were controlled by coating formation potential, and it was demonstrated that the electrodeposition could be a promising coating technique for production of tailored magnesium-CaP implants.  相似文献   
5.
6.
7.
Pulse electrodeposition of Pt and Sn using 10 mM H2PtCl6?6H2O in 0.10 M H2SO4 and 10 mM SnCl2?2H2O in 0.10 M HCl was conducted on a support matrix consisting of electropolymerized poly (3,4-ethylenedioxythiophene) (PEDOT) and electrochemically exfoliated graphene oxide (EGO). The Field Emission – Scanning Electron Microscopy (FE-SEM) studies of PtSn/PEDOT/EGO (i.e., PEDOT on EGO) showed a homogeneous globular composite, while PtSn/EGO/PEDOT (i.e., EGO on PEDOT) revealed a heterogeneous composite with wrinkled and globular surface morphologies. An Energy Dispersive X-ray (EDX) analysis (as a percentage of Pt and Sn) of PtSn/PEDOT/EGO is in agreement with the X-ray Photoelectron Spectroscopy (XPS) analysis, indicative of a homogeneous surface for the dispersion of metallic particles. However, the EDX and XPS analyses of PtSn/EGO/PEDOT showed variations in the amount of Pt and Sn, indicative of possible mixing of the EGO and PEDOT support matrices. Cyclic voltammetry (CV) and chronoamperometry using 1.0 M ethanol in 0.1 M H2SO4 demonstrated higher electrocatalytic activity (83.7 mA/cm2) and electrochemical stability (29.0% current retention) in PtSn/PEDOT/EGO than PtSn/EGO/PEDOT.  相似文献   
8.
A novelty two-step synthesized porous carbon felt (PCF) cathode modified by cyclic voltammetric (CV) electrodeposited polypyrrole (Ppy) and anthraquinone 2-sulfonate (AQS) (PCF/Ppy/AQS) for an efficient electro-Fenton process has been investigated. Brunauer Emmett Teller (BET) and scanning electron microscope (SEM) measurements verified the three-dimensional porous structure of the PCF, revealing that the specific surface area was approximately 2.5 times higher than that of the bare carbon felt (CF), which ensured more active sites available for oxygen reduction reaction (ORR). In addition, the electrodeposited Ppy decreases the charge transfer resistance (Rct) of the PCF cathode. AQS, a type of anthraquinone that can serve as an oxygen reduction catalyzer, could accelerate the ORR process and subsequently improve the performance of the electro-Fenton system. Rotating disk electrode (RDE) analysis confirmed that the ORR catalyzed by AQS was a double-electron reduction process, which contributed to hydrogen peroxide (H2O2) generation. The removal efficiency of total organic carbon (TOC) from Rhodamine B (RhB) could reach 51% within 1 h in the electro-Fenton system equipped with the PCF/Ppy/AQS, resulting in an improvement of approximately 24% compared with the bare CF cathode without porous treatment. The cycle experiment showed a good stability of the PCF/Ppy/AQS cathode. Additionally, the possible mechanism of degradation process in the electro-Fenton equipped with the PCF/Ppy/AQS cathode was proposed based on the electron paramagnetic resonance (EPR) analysis and quenching experiment. The novel fabricated PCF/Ppy/AQS provides an alternative as a high-efficiency cathode, yielding energy savings in the electro-Fenton system.  相似文献   
9.
10.
In our previous research, titanium-based nitride with high conductivity and superior corrosion resistance were developed as an ideal core material for replacing noble metal to form Pt-based core-shell catalysts by pulse electrodeposition. Meanwhile, the smaller sizes of nitride cores would also be available for pulse electrodeposition by dispersing them on carbon nanotubes (CNT). To achieve a better practice on the preparation of the Pt-based core-shell catalysts, in this work, both nitrogen-doped carbon nanotubes (N-CNT) and reduced graphene oxide (N-rGO) were used to support the copper-doped titanium nitride (Ti0.9Cu0.1N) cores. In the course of pulse electrodeposition, their influences as supports on the electronic states of electrodeposited Pt as well as their catalytic activities were compared. The results showed that the Pt preferred to electrodeposit on Ti0.9Cu0.1N cores supported by N-CNT and formed a core-shell structure. While with the same electrodeposition process, the Pt was found to be electrodeposited not only on the Ti0.9Cu0.1N cores supported by N-rGO with heavy aggregations but also on the N-rGO support. Raman spectroscopy analysis indicated that the higher degree of structural defects on N-rGO, as support, might have contributed to such divergence observation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号