首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13635篇
  免费   716篇
  国内免费   764篇
电工技术   657篇
综合类   832篇
化学工业   2720篇
金属工艺   1856篇
机械仪表   804篇
建筑科学   284篇
矿业工程   210篇
能源动力   668篇
轻工业   331篇
水利工程   81篇
石油天然气   333篇
武器工业   54篇
无线电   1467篇
一般工业技术   1978篇
冶金工业   511篇
原子能技术   173篇
自动化技术   2156篇
  2024年   9篇
  2023年   198篇
  2022年   281篇
  2021年   353篇
  2020年   376篇
  2019年   343篇
  2018年   325篇
  2017年   405篇
  2016年   368篇
  2015年   409篇
  2014年   731篇
  2013年   807篇
  2012年   644篇
  2011年   1045篇
  2010年   677篇
  2009年   820篇
  2008年   769篇
  2007年   824篇
  2006年   738篇
  2005年   665篇
  2004年   597篇
  2003年   516篇
  2002年   457篇
  2001年   328篇
  2000年   319篇
  1999年   307篇
  1998年   288篇
  1997年   244篇
  1996年   211篇
  1995年   205篇
  1994年   167篇
  1993年   132篇
  1992年   120篇
  1991年   89篇
  1990年   78篇
  1989年   65篇
  1988年   61篇
  1987年   31篇
  1986年   22篇
  1985年   20篇
  1984年   12篇
  1983年   13篇
  1982年   7篇
  1981年   12篇
  1980年   6篇
  1979年   7篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Samples in Si–Al-R-O-N (R = Y, Gd, Yb) systems were prepared by solid-state reactions using R2O3, Al2O3, SiO2 and Si3N4 powders as starting materials. X-ray diffraction was done to investigate RAM-J(R) solid solutions [RAM = R4Al2O9, J(R) = R4Si2N2O7] formation and their equilibrium with RSO (R4Si2O10). Phase relations between RAM, J(R) and RSO at 1700 °C were summarized in a phase diagram. It was determined that a limited solid solution of RAM and RSO could be formed along RAM-RSO tie-line, while RAM and J(R) form a continuous solid solution along RAM-J(R) tie-line. In RAM-J(R)-RSO ternary systems, the RAM-J(R) tie-lines were extended towards the RSO corner to form a continuous solid solution area of JRAMss (R = Y, Gd, Yb). The established phase relations in the Si–Al-R-O-N (R = Y, Gd, Yb) systems may facilitate compositional selections for developing JRAMss as monolithic ceramics or for SiC/Si3N4 based composites using the solid-solutions as a second refractory phase.  相似文献   
2.
In this study, the destabilization resistance of Sc2O3 and CeO2 co-stabilized ZrO2 (SCZ) ceramics was tested in Na2SO4 + V2O5 molten salts at 750°C–1100 °C. The phase structure and microstructure evolution of the samples during the hot corrosion testing were analyzed with X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and X-ray photoelectron spectroscopy (XPS). Results showed that the destabilization of SCZ ceramics at 750 °C was the result of the chemical reaction with V2O5 to produce m-ZrO2 and CeVO4, and little ScVO4 was detected in the Sc2O3-rich SCZ ceramics. The primary corrosion products at 900 °C and 1100 °C were CeO2 and m-ZrO2 due to the mineralization effect. The Sc2O3-rich SCZ ceramics exhibited excellent degradation resistance and phase stability owing to the enhanced bond strength and the decreased size misfit between Zr4+ and Sc3+. The destabilization mechanism of SCZ ceramic under hot corrosion was also discussed.  相似文献   
3.
This paper focuses on the design of a 2.3–21 GHz Distributed Low Noise Amplifier (LNA) with low noise figure (NF), high gain (S21), and high linearity (IIP3) for broadband applications. This distributed amplifier (DA) includes S/C/X/Ku/K-band, which makes it very suitable for heterodyne receivers. The proposed DA uses a 0.18 μm GaAs pHEMT process (OMMIC ED02AH) in cascade architecture with lines adaptation and equalization of phase velocity techniques, to absorb their parasitic capacitances into the gate and drain transmission lines in order to achieve wide bandwidth and to enhance gain and linearity. The proposed broadband DA achieved an excellent gain in the flatness of 13.5 ± 0.2 dB, a low noise figure of 3.44 ± 1.12 dB, and a small group delay variation of ±19.721 ps over the range of 2.3–21 GHz. The input and output reflection coefficients S11 and S22 are less than −10 dB. The input compression point (P1dB) and input third-order intercept point (IIP3) are −1.5 dBm and 11.5 dBm, respectively at 13 GHz. The dissipated power is 282 mW and the core layout size is 2.2 × 0.8 mm2.  相似文献   
4.
A strategy that constructs the morphotropic phase boundary and manipulates the domain structure has been used to design the component of 0.96[Bi0.5(Na0.84K0.16)0.5Ti(1-x)NbxO3]-0.04SrTiO3 (BNKT-4ST-100xNb) to enhance the strain properties for actuator application. Non-equivalent Nb5+ donor doping modulates the phase transition from the mixture of rhombohedral and tetragonal phases to the pseudocubic phase and results in the coexistence of multiple phases. Moreover, the high-resolution TEM confirms the existence of polar nano regions that contribute to the macroscopic relaxor behaviour. The size of the domains is reduced with increasing Nb5+, resulting in an enhanced relaxor behaviour. The ferroelectric-relaxor transition temperature decreases from 85 to below 30 °C, implying a non-ergodic to ergodic relaxor transition. An improved strain of 0.56% and a giant normalized strain of 1120 pm/V were achieved for BNKT-4ST-1.5Nb, which were attributed to the unique domain structure in which nanodomains are embedded in an undistorted cubic matrix. Ferroelectric, antiferroelectric, and relaxor phases coexist. As the electric field is large enough, a reversible phase transition occurs. Furthermore, good temperature stability was obtained due to the stability of the nanodomains, and no degradation in strains was observed even after 104 cycles, which may originate from the reversible phase transition and dynamic domain wall. The results show that this design strategy offers a reference way to improve the strain behaviour and that BNKT-4ST-100xNb ceramics could be a potential material for high-displacement actuator applications.  相似文献   
5.
As one of the cleanest energies, hydrogen has attracted much attention over the past decade. Hydrogen can be produced using water electrolysis in a Proton Exchange Membrane Electrolysis Cell (PEMEC). In the present study, the performance of the PEMEC, powered by the Photovoltaic-Thermal (PVT) system, is scrutinized. It is considered that the PVT system provides the required electrical power of the PEMEC and preheats the feedwater. A comprehensive numerical model of the coupled PVT-PEMEC system is developed. The model is used to investigate the effect of various operating parameters, including solar radiation intensity, inlet feedwater temperature, and feedwater mass flow rate, on the hydrogen production and operating voltage of the PEMEC at various Exchange Current Densities (ECDs). Furthermore, the effect of integration of Phase Change Material (PCM) and Thermoelectric Generator (TEG) on the hydrogen production of the system is evaluated. According to the obtained results, the PVT-TEG-PEMEC system outperforms other systems in hydrogen production. However, integration of the PVT-PEMEC system with PCM has a negligible effect on its hydrogen production.  相似文献   
6.
《Ceramics International》2022,48(4):4722-4731
In recent years, phase change material emulsions (PCMEs) with enhanced energy storage capacities and good flow characteristics have drawn significant attention. However, due to the thermodynamically unstable nature and tiny particle confinement, the nanomaterial modification strategies at PCM/water interface to improve stabilities and reduce supercooling of nano-sized PCMEs (NPCMEs) are very limited and challenging. Herein, we report a facile strategy for constructing MXene-decorated NPCME with good stability, little supercooling, and high thermal conductivity by self-assembly of MXene nanosheets at PCM/water interface. The concentrations of MXene have great influences on the average droplet diameters, stabilities, and thermophysical properties of the NPCMEs. The results show that the PCMs have been well dispersed into the water in the form of quasi-spherical droplets, with average droplet diameters of 242–805 nm. The thermal conductivity of 10 wt% n-tetradecane/water NPCME containing 9 mg ml-1 MXene is 0.693 W m-1·K-1, achieving an enhancement by 15.5%, as compared to that of water. Besides, the MXene-decorated paraffin/water NPCMEs exhibit little supercooling and enhanced heat storage capacities. More importantly, this facile self-assembly strategy opens a new platform for preparing high-performance NPCMEs, which can be used as novel heat transfer fluids for thermal energy storage systems.  相似文献   
7.
《Ceramics International》2022,48(16):22699-22711
An integrated experimental and thermodynamic modeling study of the phase equilibria in the ‘CuO0.5’-MgO-SiO2 system in equilibrium with liquid Cu metal has been undertaken to better understand the reactions between MgO-based refractories and liquid slag in copper converting and refining processes. New experimental phase equilibria data at 1250–1680 °C were obtained for this system using a high-temperature equilibration of synthetic mixtures with predetermined compositions in silica ampoules or magnesia crucibles, a rapid quenching technique, and electron probe X-ray microanalysis of the equilibrated phase compositions. The system has been shown to contain primary phase fields of cristobalite (SiO2), tridymite (SiO2), pyroxene/protoenstatite (MgSiO3), olivine/forsterite (Mg2SiO4), periclase (MgO), and cuprite (Cu2O). Three regions of 2-liquid immiscibility were found—two in the high-silica range of compositions above the cristobalite primary phase field (close to ‘CuO0.5’-SiO2 and MgO–SiO2 binaries) and one in the low-SiO2, high-‘CuO0.5’ compositional region above the periclase and olivine phase fields. The results obtained in this study indicate that silica in high-copper refining slags likely led to olivine and pyroxene phase formation, increased solubility of MgO in liquid slag, and decline in the performance of MgO-based refractories. New experimental data were used in the development of a thermodynamic database describing this pseudo-ternary system.  相似文献   
8.
《Ceramics International》2022,48(11):15243-15251
Green combustion was used to prepare a ferrite composition of Mg0.4Zn0.6Fe2O4 using a blend of fresh lemon juice as a natural fuel-reductant. Effect of heat treatment on phase, morphological, dielectric, and humidity sensor properties is discussed. The formation of a cubic spinel ferrite has been established by XRD-diffraction and vibrational spectroscopic studies. The experimental lattice parameter ranges from 8.3721 to 8.3631 Å. The broadening of octahedral band (υ2) in the vibrational spectra is an identification for the existence of ferrite nanoparticles in various sizes. The typical crystallite size ranges from 10.2 to 36.9 nm. Using micrographs obtained from field-effect scanning electron microscopy (FESEM), researchers observed a spherical-shaped microstructure with agglomerated nanoparticles. Dielectric investigations have shown that the current ferrite composition has typical dielectric dispersion. The highest reported value for saturation magnetization (Ms) in the present study is 33 emu/g. Magnetic behaviour is primarily influenced by magnetocrystalline anisotropy, cation distribution, and crystallite size. The existence of void spaces in the sintered samples, as well as their porous nature, rendered them suitable for humidity sensor applications. Sintered samples have good sensing capability at 900 °C. The current findings are integrated in terms of cation distribution and magnetocrystalline anisotropy, assuming fine size effects of ferrite nanoparticles.  相似文献   
9.
Recovery of hydrogen (H2) from H2-containing gas mixtures has great significance for energy conservation, cost reduction and benefit increase. However, the common separation methods have the ubiquitous problem due to phase equilibrium principle and results in the conflict between H2 concentration and H2 recovery rate in the product gas. Consequently, an innovative conception of hydrate-membrane coupling approach is proposed in this work. In the separation process, hydration and membrane permeation two separation driving forces coexist to achieve the aim of strengthening mass transfer kinetics. H2 and non-H2 components (hydrocarbons) are synchronously and directionally selected by membrane and hydrate to improve different phase compositions. Therefore, the gas in feed side could keep relatively high two separation driving forces (H2 fugacity and hydrocarbons fugacity). The results show that the coupling method could synchronously increase both the concentration and the recovery rate of H2 in the product gas. At the same time, the volume and concentration of the hydrocarbons in hydrate both increases effectively. It indicates that hydrate and membrane separation methods support each other in the separation process. The hydrate-membrane coupling method fundamentally solves the issue of the decreasing driving force resulting from single separation method and phase equilibrium relationship.  相似文献   
10.
GeTe is a promising candidate for the fabrication of high-temperature segments for p-type thermoelectric (TE) legs. The main restriction for the widespread use of this material in TE devices is high carrier concentration (up to ∼ 1021 cm−3), which causes the low Seebeck coefficient and high electronic component of thermal conductivity. In this work, the band structure diagram and phase equilibria data have been effectively used to attune the carrier concentration and to obtain the high TE performance. The Ge1−xBixTe (x = 0.04) material prepared by the Spark plasma sintering (SPS) technique demonstrates a high power factor accompanied by moderate thermal conductivity. As a result, a significantly higher dimensionless TE figure of merit ZT = 2.0 has been obtained at ∼ 800 K. Moreover, we are the first to propose that application of the developed Ge1−xBixTe (x = 0.04) material in the TE unicouple should be accompanied by SnTe and CoGe2 transition layers. Only such a unique solution for the TE unicouple makes it possible to prevent the negative effects of high contact resistance and chemical diffusion between the segments at high temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号