首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7599篇
  免费   219篇
  国内免费   179篇
电工技术   145篇
综合类   255篇
化学工业   2752篇
金属工艺   325篇
机械仪表   204篇
建筑科学   139篇
矿业工程   31篇
能源动力   1013篇
轻工业   50篇
水利工程   8篇
石油天然气   361篇
武器工业   15篇
无线电   789篇
一般工业技术   1656篇
冶金工业   60篇
原子能技术   53篇
自动化技术   141篇
  2024年   7篇
  2023年   102篇
  2022年   105篇
  2021年   181篇
  2020年   199篇
  2019年   158篇
  2018年   118篇
  2017年   225篇
  2016年   215篇
  2015年   324篇
  2014年   466篇
  2013年   540篇
  2012年   316篇
  2011年   599篇
  2010年   478篇
  2009年   502篇
  2008年   433篇
  2007年   477篇
  2006年   413篇
  2005年   312篇
  2004年   320篇
  2003年   261篇
  2002年   238篇
  2001年   140篇
  2000年   119篇
  1999年   119篇
  1998年   106篇
  1997年   86篇
  1996年   91篇
  1995年   73篇
  1994年   71篇
  1993年   47篇
  1992年   28篇
  1991年   20篇
  1990年   14篇
  1989年   11篇
  1988年   16篇
  1987年   10篇
  1986年   3篇
  1985年   8篇
  1984年   10篇
  1983年   17篇
  1982年   14篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1959年   1篇
排序方式: 共有7997条查询结果,搜索用时 15 毫秒
1.
This study focuses on the chemistry, thermal stability, and electrical conductivity of low/intermediate pyrolysis temperature (700?900 °C) polysiloxane derived ceramics. These ceramics were modified with additional carbon derived from divinylbenzene (DVB) added to the precursor. Their electrical properties were investigated for potential uses in micro-electrical mechanical systems (MEMS) and anodes for lithium batteries. The microstructure and chemical composition was investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS); thermogravimetric analysis (TGA) provided insight into the thermal stability; and electrochemical impedance spectroscopy (EIS) into the electrical properties of the material. The increase of pyrolysis temperature and carbon content lead to an enhancement of the electrical conductivity, higher than previously reported values for intermediate pyrolysis temperature SiOC polymer derived ceramics. A limit of the amount of DVB that can be added to PHMS to produce a hybrid precursor has also been obtained.  相似文献   
2.
Calcium cobaltite Ca3Co4O9, abbreviated Co349, is a promising thermoelectric material for high-temperature applications in air. Its anisotropic properties can be assigned to polycrystalline parts by texturing. Tape casting and pressure-assisted sintering (PAS) are a possible future way for a cost-effective mass-production of thermoelectric generators. This study examines the influence of pressure and dwell time during PAS at 900°C of tape-cast Co349 on texture and thermoelectric properties. Tape casting aligns lentoid Co349. PAS results in a textured Co349 microstructure with the thermoelectrically favorable ab-direction perpendicular to the pressing direction. By pressure variation during sintering, the microstructure of Co349 can be tailored either toward a maximum figure of merit as required for energy harvesting or toward a maximum power factor as required for energy harvesting. Moderate pressure of 2.5 MPa results in 25% porosity and a textured microstructure with a figure of merit of 0.13 at 700°C, two times higher than the dry-pressed, pressureless-sintered reference. A pressure of 7.5 MPa leads to 94% density and a high power factor of 326 µW/mK2 at 800°C, which is 11 times higher than the dry-pressed reference (30 MPa) from the same powder.  相似文献   
3.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
4.
A new, experimental method based on air flow rate rather than current is presented to optimize operating parameters for the stacks and systems of proton exchange membrane fuel cells (PEMFCs) for maximizing their net power. This approach is illustrated for a commercial 18 kW PEMFC module. The impact of contamination pressure drop across the cathode air filter is also investigated on the compressor behavior. It is further shown that a 4V reduction in the compressor voltage reduces its power consumption by 9.1%. Using the 3D graphs of the power-pressure-flow data, it is found that the stack pressure of 180 kPaa is superior to the higher tested pressures as it enhances the net power by 7.0 and 13.7% at different conditions. Application of the present study will lead to the development of PEMFCs with higher power output by optimizing stack pressure, stoichiometry and air flow to properly deliver the system design specifications.  相似文献   
5.
GeTe is a promising candidate for the fabrication of high-temperature segments for p-type thermoelectric (TE) legs. The main restriction for the widespread use of this material in TE devices is high carrier concentration (up to ∼ 1021 cm−3), which causes the low Seebeck coefficient and high electronic component of thermal conductivity. In this work, the band structure diagram and phase equilibria data have been effectively used to attune the carrier concentration and to obtain the high TE performance. The Ge1−xBixTe (x = 0.04) material prepared by the Spark plasma sintering (SPS) technique demonstrates a high power factor accompanied by moderate thermal conductivity. As a result, a significantly higher dimensionless TE figure of merit ZT = 2.0 has been obtained at ∼ 800 K. Moreover, we are the first to propose that application of the developed Ge1−xBixTe (x = 0.04) material in the TE unicouple should be accompanied by SnTe and CoGe2 transition layers. Only such a unique solution for the TE unicouple makes it possible to prevent the negative effects of high contact resistance and chemical diffusion between the segments at high temperatures.  相似文献   
6.
This study investigates the preparation of polyetherimide (PEI) – LaNi5 composites films for hydrogen storage. Prior to the polymer addition, LaNi5 was ball-milled at different conditions (250, 350, and 450 RPM) and annealed at 500 °C for 1 h under vacuum. The composites were produced with BM-LaNi5-350 (PEI/LaNi5-350) and annealed BM-LaNi5-350 (PEI/LaNi5-350-TT). Membranes were successfully produced through solvent casting assisted by an ultrasonic bath. The particles dispersion and the film morphology did not change after hydrogenation cycles. In the H2 sorption experiments at 43 °C and 20 bar, the films stored H2 without incubation time; both samples reached a capacity of ~0.6 wt%. The H2 sorption kinetics of PEI/LaNi5-350 was comparable to that of BM-LaNi5-350, whereas PEI/LaNi5-350-TT presented significantly slower kinetics. LaNi5 oxidation was hindered by PEI, showing that it can be explored to improve metal hydrides air resistance. The results demonstrated that PEI films filled with LaNi5 are promising materials for hydrogen storage.  相似文献   
7.
The use of hydrogen as a fuel is increasing exponentially, and the most economical way to store and transport hydrogen for fuel use is as a high-pressure gas. Polymers are widely used for hydrogen distribution and storage systems because they are chemically inert towards hydrogen. However, when exposed to high-pressure hydrogen, some hydrogen diffuses through polymers and occupies the preexisting cavities inside the material. Upon depressurization, the hydrogen trapped inside polymer cavities can cause blistering or cracking by expanding these cavities. A continuum mechanics–based deformation model was deployed to predict the stress distribution and damage propagation while the polymer undergoes depressurization after high-pressure hydrogen exposure. The effects of cavity size, cavity location, and pressure inside the cavity on damage initiation and evolution inside the polymer were studied. The stress and damage evolution in the presence of multiple cavities was also studied, because interaction among cavities alters the damage and stress field. It was found that all these factors significantly change the stress state in the polymer, resulting in different paths for damage propagation. The effect of adding carbon black filler particles and plasticizer on the damage was also studied. It was found that damage tolerance of the polymer increases drastically with the addition of carbon black fillers, but decreases with the addition of the plasticizer.  相似文献   
8.
Zirconia-alumina multiphase ceramic fibers with 80 wt% (Z80A20 fiber) and 10 wt% (Z10A90 fiber) proportions of zirconia were prepared via melt-spinning and calcination from solid ceramic precursors synthesized by controllable hydrolysis of metallorganics. The zirconia-alumina multiphase fibers had a diameter of about 10 µm and were evenly distributed with alumina and zirconia grains. The Z80A20 and Z10A90 ceramic fibers had the highest filament tensile strength of 1.78 GPa and 1.87 GPa, respectively, with a peak value of 2.62 GPa and 2.71 GPa. The Z80A20 ceramic fiber has superior thermal stability compared to the Z10A90 ceramic fiber and a higher rate of filament strength retention due to the stability in grain size. After heat treatment at 1100 °C, 1200 °C, and 1300 °C for 1 h respectively, the filament tensile strength retention rate of Z80A20 ceramic fibers was 87 %, 80 %, and 40 %. While Z10A90 ceramic fiber was fragile after being heated at 1300 °C. The results showed that the high zirconia content facilitated the fiber's thermal stability.  相似文献   
9.
A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight.  相似文献   
10.
《能源学会志》2020,93(3):934-952
Recently, commodity plastics have been shown to be a promising additive to improve the fuel properties of biodiesel, which offers a promising solution to the plastic pandemic. As many environmental and societal issues arise from plastic pollution, repurposing technologies are paramount in order to meet Sustainable Development Goals (SDG). A potentially cost-effective approach can be achieved by using waste plastics as biodiesel additives – resonating to the expression ‘to kill two birds with one stone’. However, given the novelty of such investigation, current optimization studies show varying results on the ideal plastic-to-biodiesel ratio as well as the reaction parameters. The difficulty in determining the exact optimum values is due to the many variations of biodiesel properties and the complex behaviour of plastic polymers, which are seldom discussed in review papers. Hence, to address the literature gap, this paper offers the necessary fundamentals of biodiesel and plastic dissolution; facilitating future researches to advance the application of plastics as viable biodiesel additives. Accordingly, the topics covered include the fuel and solvent properties of biodiesel related to its' composition, as well as the polymer dissolution phenomena. Finally, as the focal aim of the paper, a synopsis on the recent advancement of plastic-added biodiesel is presented; in particular, those that are related to the blend characteristics, fuel properties, combustion quality, and environmental impact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号