首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1831篇
  免费   38篇
  国内免费   52篇
电工技术   11篇
综合类   41篇
化学工业   317篇
金属工艺   290篇
机械仪表   104篇
建筑科学   32篇
矿业工程   83篇
能源动力   210篇
轻工业   52篇
水利工程   5篇
石油天然气   7篇
武器工业   7篇
无线电   79篇
一般工业技术   392篇
冶金工业   139篇
原子能技术   72篇
自动化技术   80篇
  2024年   1篇
  2023年   22篇
  2022年   29篇
  2021年   61篇
  2020年   56篇
  2019年   54篇
  2018年   51篇
  2017年   49篇
  2016年   26篇
  2015年   40篇
  2014年   89篇
  2013年   119篇
  2012年   81篇
  2011年   163篇
  2010年   95篇
  2009年   113篇
  2008年   113篇
  2007年   130篇
  2006年   84篇
  2005年   64篇
  2004年   69篇
  2003年   67篇
  2002年   52篇
  2001年   37篇
  2000年   39篇
  1999年   37篇
  1998年   40篇
  1997年   18篇
  1996年   22篇
  1995年   24篇
  1994年   27篇
  1993年   5篇
  1992年   10篇
  1991年   3篇
  1990年   8篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1971年   1篇
排序方式: 共有1921条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(5):6436-6442
Although the optical properties of nanocrystalline cesium tungsten bronze have been widely studied, there is a lack of research on the effect of particle size on its optical properties. In order to further investigate size and shape effect on the NIR shielding performance, cesium tungsten bronze nanoparticles with different sizes and morphologies were prepared by two methods. The size of irregular shaped samples prepared by solvothermal method is tens of nanometers, while the size of hexagonal prism shaped samples prepared by solid state reaction method is hundreds of nanometers. The element spectrums shows that there are more oxygen vacancies in large particles than in small particles. The NIR shielding performance of large particles far lower than that of small particles, indicating that the influence of shape and size on optical properties is more obvious than that of oxygen vacancy. Theoretical calculation on hexagonal prism shaped particles exhibits that the NIR extinction of large aspect ratio is better at longer wavelength and small aspect ratio is better at shorter wavelength.  相似文献   
2.
《Ceramics International》2021,47(22):31329-31336
Traditional inorganic materials exhibit rigidity owing to the lack of polymer chains in polymer materials or atom slipping in metals. However, nanometerization has been recently proposed for the conversion of inorganic oxide materials into flexible materials. Herein, the flexible inorganic luminescent material, CaTiO3:0.2%Pr3+, was synthesized through electrospinning, and the macroscopic flexibility of pure inorganic CaTiO3:0.2%Pr3+ was achieved. The flexible membrane was characterized via X-ray diffraction, thermogravimetry, scanning electron microscopy (SEM), and photoluminescence analyses. The grain size was analyzed at various calcination temperatures via SEM, and the results suggested that the increase in the calcination temperature resulted in the growth of crystal grains. Studies have reported that the growth of crystal grains is beneficial for improving the luminescence performance; however, to obtain better flexibility, smaller crystal grains are required. This study provides an important reference for the design of flexible inorganic materials.  相似文献   
3.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
4.
Lead-free relaxor ferroelectrics (Ca0.28Ba0.72)2.1Na0.8Nb5-xSbxO15 (CBNNS) and (Ca0.28Ba0.72)2.1Na0.8Nb5-yTayO15 (CBNNT) with tungsten bronze structure were fabricated via solid-state reactions. The obtained CBNNS and CBNNT ceramics showed different dielectric behaviors. Only the CBNNS ceramics revealed an intensified diffusion and relaxor-like characteristics, which could be verified by the modified Curie–Weiss law. The relaxor behaviors in CBNNS were attributed to the radii difference between Sb5+ and Nb5+ ions co-occupying in B-sites. For the substitution of Nb5+ by Sb5+ in CBNNS ceramics, the change from macroscopic polarization to local polarization could also give rise to the obvious relaxor behavior. The Raman spectra verified a larger off-centering of the cation and a higher distortion degree for BO6 octahedron in the ab plane for CBNNS ceramics when compared with those of CBNNT. In addition, the ferroelectric properties of CBNNS ceramics further indicated the relaxor ferroelectric nature, and also confirmed that the relaxor behavior helped to improve the energy-storage performance.  相似文献   
5.
Unfilled tungsten bronze ceramics with the nominal formula Ba4PrFe0.5Nb9.5O30 were synthesized via the standard solid-state sintering route, and the effects of oxygen vacancies on the dielectric and electrical properties were investigated in addition to the structure. Room-temperature X-ray diffraction showed that the N2-annealed sample had the largest cell volume. Low-temperature spectrum showed that N2 annealing rendered the dielectric constant and dielectric loss more frequency dispersive, whereas O2 annealing inhibited the frequency dispersion. The dc conductivity of all the samples originated from the electrons produced in the second ionization of oxygen vacancies and was most likely controlled by a mixed conduction mechanism of the electron and oxygen-vacancy ions. The N2-annealed sample has the highest dc conductivity owing to its high concentration of oxygen vacancies. The broadening of the Raman lines and the decrease of Raman intensity for the N2-annealed sample originated from a significant structural disorder. X-ray photoelectron spectra demonstrated that the increased oxygen vacancies caused by the change of valences of Fe and Pr ions contributed to the structural disorder.  相似文献   
6.
《Ceramics International》2021,47(20):28487-28492
In this work, the microwave dielectric properties of Ba4(Nd1-yBiy)28/3Ti18-x(Al1/2Ta1/2)xO54(0≤x≤2, 0.05≤y≤0.2) ceramics co-substituted by A/B-site were studied. Firstly, (Al1/2Ta1/2)4+ was used for substitution at B-site. At 0≤x≤1.5, the above mentioned ceramic was found to exist in single-phase tungsten bronze structure, but at x = 2.0, the secondary phase appeared. Although the dielectric constant decreased by doping the (Al1/2Ta1/2)4+, but the quality factor was observed to improve by 40% and the temperature coefficient of resonant frequency decreased by 75%. Based on the above results, Bi3+ was introduced to Ba4Nd28/3Ti17(Al1/2Ta1/2)O54. The introduction of Bi3+ reduced the sintering temperature, greatly improved the dielectric constant, and ultimately decreased the temperature coefficient of resonant frequency, but it led to deterioration of quality factor. At last, with appropriate site-substitution content control (x = 1.0,y = 0.15), excellent comprehensive properties (εr = 89.0, Q × f = 5844 GHz @ 5.89 GHz,TCF = +8.7 ppm/°C) were obtained for the samples sintered at 1325 °C for 4 h.  相似文献   
7.
Since titanium has high affinity for hydrogen and reacts reversibly with hydrogen,the precipitation of titanium hydrides in titanium and its alloys cannot be ignored.Two most common hydride precipitates in α-Ti matrix are γ-hydride and δ-hydride,however their mechanisms for precipitation are still unclear.In the present study,we find that both γ-hydride and δ-hydride phases with different specific orienta-tions were randomly precipitated in the as-received hot forged commercially pure Ti.In addition,a large amount of the titanium hydrides can be introduced into Ti matrix with selective precipitation by using electrochemical treatment.Cs-corrected scanning transmission electron microscopy is used to study the precipitation mechanisms of the two hydrides.It is revealed that the γ-hydride and δ-hydride precipita-tions are both formed through slip + shuffle mechanisms involving a unit of two layers of titanium atoms,but the difference is that the γ-hydride is formed by prismatic slip corresponding to hydrogen occupy-ing the octahedral sites of α-Ti,while the δ-hydride is formed by basal slip corresponding to hydrogen occupying the tetrahedral sites of cα-Ti.  相似文献   
8.
9.
As an important ceramic material, tungsten carbide (WC) is utilized as the typical mold in precision glass molding, which has replaced conventional grinding and polishing to provide a highly replicative process for mass manufacturing of optical glass components. Ultra-precision grinding, which is time consuming and has low reproducibility, is the only method to machine such WC molds to high profile accuracy. Although diamond turning is the most widely used machining method for fabrication of optical molds made of metals, diamond turning of WC is still considered challenging due to fast abrasive wear of the diamond tool caused by high brittleness and hardness of WC. Ultrasonic vibration cutting has been proven to be helpful in realizing ductile-mode machining of brittle materials, but its tool life is still not long enough to be utilized in practical diamond turning of optical WC molds. In the current study, a hybrid method is proposed to combine electrochemical processing of WC workpiece surface into the diamond turning process. Cutting tests on WC using poly-crystalline diamond tools were conducted to evaluate its effect on improvement of tool wear and surface quality. Validation cutting tests using single crystal diamond tools has proven that the proposed hybrid method is able to significantly reduce the diamond tool wear and improve the surface quality of machined ultra-fine grain WC workpiece compared to ultrasonic vibration cutting without electrochemical processing.  相似文献   
10.
The tungsten trioxide attracts less attention due to the low electron transfer kinetics that hinders the interaction of electrons and ions during the hydrogen evolution reaction (HER). But the oxygen vacancy strategy can inspire its electrocatalytic activity for HER because it has a positive effect on improving the charge transfer and compensating for the weak hydrogen adsorption of the tungsten trioxide. By synthesizing a series of substoichiometric tungsten oxides, we reveal the linear relationship between the catalytic activity and the content of oxygen vacancies, which indicates that the oxygen vacancy strategy is an achievable route to enhance the HER for metal oxides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号