首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120736篇
  免费   10639篇
  国内免费   7126篇
电工技术   8380篇
技术理论   2篇
综合类   7744篇
化学工业   29076篇
金属工艺   9385篇
机械仪表   8344篇
建筑科学   4060篇
矿业工程   1679篇
能源动力   3900篇
轻工业   7043篇
水利工程   686篇
石油天然气   4591篇
武器工业   1119篇
无线电   13235篇
一般工业技术   17836篇
冶金工业   3405篇
原子能技术   1239篇
自动化技术   16777篇
  2024年   391篇
  2023年   1724篇
  2022年   2742篇
  2021年   3543篇
  2020年   3167篇
  2019年   3140篇
  2018年   3037篇
  2017年   3764篇
  2016年   4199篇
  2015年   4631篇
  2014年   5940篇
  2013年   6857篇
  2012年   7114篇
  2011年   8334篇
  2010年   6926篇
  2009年   7838篇
  2008年   7377篇
  2007年   8154篇
  2006年   7766篇
  2005年   6342篇
  2004年   5590篇
  2003年   5350篇
  2002年   4446篇
  2001年   3553篇
  2000年   3117篇
  1999年   2479篇
  1998年   1849篇
  1997年   1497篇
  1996年   1328篇
  1995年   1308篇
  1994年   1160篇
  1993年   921篇
  1992年   737篇
  1991年   487篇
  1990年   361篇
  1989年   323篇
  1988年   192篇
  1987年   124篇
  1986年   124篇
  1985年   92篇
  1984年   79篇
  1983年   57篇
  1982年   55篇
  1981年   60篇
  1980年   29篇
  1979年   24篇
  1978年   24篇
  1977年   21篇
  1976年   28篇
  1975年   21篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
中国石化海南炼油化工有限公司0.2 Mt/a C5/C6烷烃异构化装置以连续重整装置的拔头油为原料,使用NNI-1催化剂,采用一次通过流程,不设脱异戊烷塔和稳定塔,经设在连续重整装置内的脱丁烷塔稳定处理后作为汽油调合组分。该装置于2006年9月开工投产,截至2015年3月已连续运行3个周期。长周期运行分析结果表明:前两个周期中NNI-1催化剂具有较高的异构化活性及选择性,C5异构化率为60%左右,C6异构化率为80%左右,C6选择性为15%左右,产品辛烷值基本达到技术指标要求(RON≥78);而在第三周期运行中,催化剂积炭增加等原因导致其异构化活性及选择性降低,异构化产品辛烷值提升能力呈现逐步衰减的趋势,提高反应苛刻度已不能弥补催化剂活性下降造成的产品辛烷值降低。为保证装置长周期运行,建议择机停工对催化剂进行再生,或是直接换用与装置原料性质匹配的异构化催化剂。  相似文献   
2.
The main objective of the present work is to improve the performance of bonded joints in carbon fiber composite structures through introducing Multi-Walled Carbon Nanotubes (MWCNTs) into Epocast 50-A1/946 epoxy, which was primarily developed for joining and repairing of composite aircraft structures. Results from tension characterizations of structural adhesive joints (SAJs) with different scarf angles (5–45°) showed improvement up to 40% compared to neat epoxy (NE)–SAJs. Special attention was considered to investigate the performance of SAJs with 5° scarf angle under different environments. The tensile strength and stiffness of both NE-SAJs and MWCNT/E-SAJs were dramatically decreased at elevated temperature. Water absorption showed a marginal drop of about 2.0% in the tensile strength of the moist SAJs compared to the dry one. Cracks initiation and propagation were detected effectively using instrumented-SAJs with eight strain gauges. The experimental results agree well with the predicted using three-dimensional finite element analysis model.  相似文献   
3.
This paper presents the Kriging model approach for stochastic free vibration analysis of composite shallow doubly curved shells. The finite element formulation is carried out considering rotary inertia and transverse shear deformation based on Mindlin’s theory. The stochastic natural frequencies are expressed in terms of Kriging surrogate models. The influence of random variation of different input parameters on the output natural frequencies is addressed. The sampling size and computational cost is reduced by employing the present method compared to direct Monte Carlo simulation. The convergence studies and error analysis are carried out to ensure the accuracy of present approach. The stochastic mode shapes and frequency response function are also depicted for a typical laminate configuration. Statistical analysis is presented to illustrate the results using Kriging model and its performance.  相似文献   
4.
Microwave irradiation has been proven to be an effective heating source in synthetic chemistry, and can accelerate the reaction rate, provide more uniform heating and help in developing better synthetic routes for the fabrication of bone-grafting implant materials. In this study, a new technique, which comprises microwave heating and powder metallurgy for in situ synthesis of Ti/CaP composites by using Ti powders, calcium carbonate (CaCO3) powders and dicalcium phosphate dihydrate (CaHPO4·2H2O) powders, has been developed. Three different compositions of Ti:CaCO3:CaHPO4·2H2O powdered mixture were employed to investigate the effect of the starting atomic ratio of the CaCO3 to CaHPO4·2H2O on the phase, microstructural formation and compressive properties of the microwave synthesized composites. When the starting atomic ratio reaches 1.67, composites containing mainly alpha-titanium (α-Ti), hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP) and calcium titanate (CaTiO3) with porosity of 26%, pore size up to 152 μm, compressive strength of 212 MPa and compressive modulus of 12 GPa were formed. The in vitro apatite-forming capability of the composite was evaluated by immersing the composite into a simulated body fluid (SBF) for up to 14 days. The results showed that biodissolution occurred, followed by apatite precipitation after immersion in the SBF, suggesting that the composites are suitable for bone implant applications as apatite is an essential intermediate layer for bone cells attachment. The quantity and size of the apatite globules increased over the immersion time. After 14 days of immersion, the composite surface was fully covered by an apatite layer with a Ca/P atomic ratio approximately of 1.68, which is similar to the bone-like apatite appearing in human hard tissue. The results suggested that the microwave assisted-in situ synthesis technique can be used as an alternative to traditional powder metallurgy for the fabrication of Ti/CaP biocomposites.  相似文献   
5.
Pleurotus eryngii, the second largest industrial cultivation mushroom in China, is usually cultivated on substrates mainly consisting of sawdust and corncob. In this study, experiments were performed to determine the effects of different carbon sources and C/N values on nonvolatile taste components of P. eryngii. The effects of different carbon sources on nonvolatile taste components levels revealed that sawdust was beneficial to high levels of crude protein, amino acids, 5′‐nucleotides and equivalent umami concentration, while corncob was beneficial to high contents of carbohydrate, polysaccharides and trehalose. At the similar C/N values, relatively higher sawdust content was beneficial to umami amino acid production, while relatively higher corncob content was beneficial to high contents of carbohydrate, polysaccharides and mannitol. Higher C/N value was beneficial to high levels of crude protein, amino acids, 5′‐nucleotides and equivalent umami concentration, while lower C/N value was beneficial to high contents of carbohydrate, polysaccharides and trehalose. These results provided information for P. eryngii fruit body industrial cultivation to obtain specific nonvolatile taste components with high levels.  相似文献   
6.
Although hybrid Petri net (HPN) is a popular formalism in modelling hybrid production systems, the HPN model of large scale systems gets substantially complicated for analysis and control due to large dimensionality of such systems. To overcome this problem, a typical approach is to decompose the net into subnets and then control the plant through hierarchical or decentralized structures. Although this concept has been widely discussed in the literature for discrete PNs, there is a lack of research for HPNs. In this paper, a new method of decomposition of first-order hybrid Petri nets (FOHPNs) is proposed first and then the hierarchical control of the subnets through a coordinator is introduced. The advantage of using the proposed approach is validated by an existing example. A sugar milling case study is analysed by using a decomposed FOHPN model and the optimization results are compared against the results of the approaches presented in other papers. Simulation results show not only an improvement in production rate, but also show the ability to control the plant online. In addition, by using the hierarchical control structure for an FOHPN model, it is possible to reduce the cost of communication links, improve the reliability of the system, maintain the plant locally, and partially redesign the system.  相似文献   
7.
Inspired by biological systems in which damage triggers an autonomic healing response, a polymer composite material that can heal itself when cracked has been developed. In this work, compression and tensile properties of a self-healed fibre reinforced epoxy composites were investigated. Microencapsulated epoxy and mercaptan healing agents were incorporated into a glass fibre reinforced epoxy matrix to produce a polymer composite capable of self-healing. The self-repair microcapsules in the epoxy resin would break as a result of microcrack expansion in the matrix, and letting out the strong repair agent to recover the mechanical strength with a relative healing efficiency of up to 140% which is a ratio of healed property value to initial property value or healing efficiency up to 119% if using the healed strength with the damaged strength.  相似文献   
8.
Fiber orientations play the decisive role in grinding process of woven ceramic matrix composites, but the influence of woven fibers in grinding process is not clear. This paper studies the surface quality and grinding force by comparing different woven surfaces. Through a series of experiments in optimized sampling conditions, we analyze characteristics of the material surface topography height, wave distribution and surface support properties in details. And we find some outstanding characteristics of the surface microstructure. We also study the influence of grinding processing parameters on surface microstructure. The results show that machining surface which contains more parallel fibers is rougher and more keenness than gauss surface. Grinding wheel speed and depth of cut have great influence on surface topography and surface support properties. And it is discovered that grinding forces are also highly dependent on fiber orientations. The mechanism of the grinding phenomena is also analyzed in this paper according to knowledge of fracture mechanics and mechanical damage phenomenology. The research obtained will be an important technical support on improving the processing quality of woven ceramic matrix composites.  相似文献   
9.
The study presents the preparation of the new magnetic nanocomposite based on PLGA and magnetite. The PLGA used to obtain the magnetic nanocomposites was synthesized by the copolymerization of lactic acid with glycolic acid, in the presence of tin octanoate [Sn(Oct)2] as catalyst, by polycondensation procedure. Magnetite was obtained by co-precipitation from aqueous salt solutions FeCl2/FeCl3. The particles size of magnetite was 420 nm, and the saturation magnetization 62.78 emu/g, while the PLGA/magnetite nanocomposite size was 864 nm and the saturation magnetization 39.44 emu/g. The magnetic nanocomposites were characterized by FT-IR, DLS technique, SEM, VSM and simultaneous thermal analyses (TG–FTIR–MS). The polymer matrix PLGA acts as a shell and carrier for the active component, while magnetite is the component which makes targeting possible by external magnetic field manipulation. Based on the gases resulted by thermal degradation of PLGA copolymer, using the simultaneous analysis TG–FTIR–MS, a possible degradation mechanism was proposed.  相似文献   
10.
An experimental investigation on the mechanism of porosity formation during the laser joining of carbon fiber reinforced polymer (CFRP) and steel is presented. The porosity morphology and distribution were characterized by optical and scanning electron microscopy, and the thermal pyrolysis behaviors were investigated by thermal analysis and designed back-side cooling experiments. The results show that there are two types of porosities in CFRP. Porosity I only appears when the heat input is more than 77.8 J/mm. It has a smooth inner wall and distributes near the bonding interface between CFRP and steel at the central area of melted zone, which is caused by gaseous products such as CO2, NH3, H2O, and hydrocarbons produced by the pyrolysis of CFRP. Porosity II can be seen under all joining conditions. It has a rough inner wall and distributes far away from the bonding interface, concentrating at the final solidification locations. Porosity II is caused by the shrinkage of melted CFRP during solidification stage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号