首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15804篇
  免费   716篇
  国内免费   698篇
电工技术   251篇
综合类   995篇
化学工业   1651篇
金属工艺   5175篇
机械仪表   1467篇
建筑科学   503篇
矿业工程   404篇
能源动力   405篇
轻工业   154篇
水利工程   192篇
石油天然气   241篇
武器工业   116篇
无线电   113篇
一般工业技术   1422篇
冶金工业   3767篇
原子能技术   45篇
自动化技术   317篇
  2024年   14篇
  2023年   128篇
  2022年   304篇
  2021年   329篇
  2020年   371篇
  2019年   247篇
  2018年   278篇
  2017年   363篇
  2016年   377篇
  2015年   352篇
  2014年   827篇
  2013年   799篇
  2012年   1035篇
  2011年   1220篇
  2010年   861篇
  2009年   877篇
  2008年   653篇
  2007年   1084篇
  2006年   1032篇
  2005年   896篇
  2004年   767篇
  2003年   742篇
  2002年   705篇
  2001年   647篇
  2000年   520篇
  1999年   437篇
  1998年   309篇
  1997年   254篇
  1996年   188篇
  1995年   181篇
  1994年   134篇
  1993年   83篇
  1992年   51篇
  1991年   39篇
  1990年   32篇
  1989年   29篇
  1988年   22篇
  1987年   8篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   5篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
MgAl2O4 transparent ceramics were shaped by a commonly used polyacrylic acid (PAA), which acted as both dispersant and gelling agent. The spinel slurries were prepared by ball-milling MgAl2O4 powder, PAA, and water in an attrition mill. The gelling of slurries happened at room temperature in air atmosphere without any other organic additive. The gelling mechanism was the formation of chelates between Mg2+ and carboxyl groups (-COO) of PAA. The frequency-based testing method was applied to investigate the gelling process of the as-prepared slurry. In addition, a novel in situ characterization method based on a modified indentation testing was invented to better understand the strengthening of the wet green body with time and to guide when demolding could be carried out. After sintering, transparent MgAl2O4 ceramics with high in-line transmittance were resulted.  相似文献   
2.
《Ceramics International》2022,48(18):25975-25983
This work reports the innovative development of a borosilicate glass/Al2O3 tape for LTCC applications using an eco-friendly aqueous tape casting slurry. Polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) were the respective dispersants, while carboxymethyl cellulose (CMC) and styrene acrylic emulsion (SA) were the respective binders. The results showed that PVP was more suitable than PAA as the dispersant for the aqueous casting slurry, and that 1.5 wt% PVP would achieve well dispersion of CABS glass/Al2O3 powder in the aqueous slurry. Moreover, a small amount of 2.0 wt% CMC binder could yield smooth CABS glass/Al2O3 tapes crack free. A high-quality CABS glass/Al2O3 tape with a smooth surface was made from an aqueous slurry containing 1.5 wt% PVP dispersant, 2.0 wt% CMC binder, and 2.0 wt% PEG-400 plasticizer. The density, tensile strength, and surface roughness of the green tape were 2.05 g/cm3, 0.87 MPa, and 148 nm, respectively. The resulting CABS glass/Al2O3 composites sintered at 875 °C exhibited a bulk density of 3.14 g/cm3, a dielectric constant of 8.09, a dielectric loss of 1.0 × 10?3, a flexural strength of 213 MPa, a thermal expansion coefficient of 5.30 ppm/°C, and a thermal conductivity of 3.2 W m?1 K?1, thus demonstrating its broad prospects in LTCC applications.  相似文献   
3.
《Ceramics International》2022,48(11):15525-15532
In this paper, by simulating the gas phase conditions inside the MgO–Al2O3–C refractories during continuous casting process and combining with thermodynamic analysis, as well as SEM analysis, the gas-gas and gas-solid formation of MA spinel were clarified in carbon containing refractories. Thermodynamic calculations showed that gas partial pressure of CO, O2 and Mg could meet the formation and stable existence conditions of MA spinel in MgO–Al2O3–C refractories under service environment, and nitrogen could not affect the formation of MA spinel at 1550 °C in the thermodynamic condition. The formation processes of MA spinel were analyzed experimentally under embedding carbon atmosphere. The carbon-coated alumina powders in MgO–Al2O3–C refractories prevented the direct contact between magnesia and alumina. Mg gas was formed by carbon thermal reaction, then reacted with alumina (gas-solid) and gas containing aluminum (gas-gas) to generate MA spinel. Through gas-gas or gas-solid reaction, the formation of MA spinel was effectively controlled. By means of SEM analysis, a two-layer structure with dense outer spinel layer and loose inner layer was formed in MgO–Al2O3–C refractories.  相似文献   
4.
An easy albeit quite effective deionization suspension treatment was adopted to alleviate the detrimental effects related to the hydrolysis of Y2O3 in an aqueous medium. Fabrication of highly transparent Y2O3 ceramics with a fine grain size via air pre-sintering and post–hot isostatic pressing (HIP) treatment without using any sintering additive was achieved using the treated suspensions. The hydrolysis issue of Y2O3 powder in an aqueous medium was effectively alleviated by using deionization treatment, and a well-dispersed suspension with a low concentration of dissolved Y3+ species was obtained. The dispersed suspensions were consolidated by the centrifugal casting method, and the green bodies derived from the suspension of 35.0 vol% solid loading showed an improved homogeneity with a relative density of 52.1%. Fully dense Y2O3 transparent ceramic with high transparency was obtained by pre-sintering consolidated green compacts at a low temperature of 1400°C for 16 h in air followed by a post-HIP treatment at 1550°C for 2 h under 200 MPa pressure. The sample had a fine average grain size of 690 nm. The in-line transmittance of the sample reached 83.3% and 81.8% at 1100 nm and 800 nm, respectively, very close to the theoretical values of Y2O3.  相似文献   
5.
《Ceramics International》2022,48(4):4904-4910
The anisotropic mechanical properties of ultrasound freeze cast epoxy-ceramic composite materials were studied by measuring flexural strength and fracture resistance curves (R-curves) using both unnotched and notched three-point beam bending experiments, respectively, cut in three different orientations relative to the directional freezing axis. Three ultrasound frequencies of 0.699, 1.39 and 2.097 MHz were used in order to introduce different length scales into the microstructure, with 0 MHz used as the control samples. For all cases, the composites showed higher strength and fracture resistance when the crack plane cut across the direction of ice growth (denoted as the YX orientation). The anisotropic properties were more evident for the material produced without ultrasound (0 MHz) where the flexural strength was approximately 160% higher for the YX orientation compared to two orthogonal orientations. Most of the fracture resistance increase was found to occur within a crack extension, Δa, of ~0.5 mm. Comparing the fracture resistance at Δa = 0.5 mm for the highly anisotropic 0 MHz samples showed that the YX orientation was approximately 86% tougher than the two orthogonal orientations. When the ultrasound operation frequencies of 0.699, 1.39 and 2.097 MHz were applied, the amount of anisotropy in the strength and fracture resistance gradually decreased as the operating frequency increased. The high strength and fracture resistance for the YX orientation was attributed to the alignment of the ceramic particles along the freeze front direction creating a barrier for crack propagation. Ultrasound modifies the material microstructure, introducing relatively dense ceramic layers perpendicular to the freezing front direction that act as an additional, orthogonal barrier to crack propagation. The addition of the denser layers acts to improve the mechanical properties in the weaker orientations and reduce the overall anisotropy.  相似文献   
6.
《Ceramics International》2022,48(8):10733-10740
Multivalent ion-conducting ceramics are required for the manufacture of high-safety, high-capacity rechargeable batteries. However, the low ionic conductivity of solid electrolytes and discrepancies in the thermal expansion between the battery components limit their widespread application. Furthermore, anisotropic thermal expansion in crystals during battery manufacturing and the charge-discharge cycles causes the formation of microcracks, which degrade the battery performance. The physical properties of ceramic materials with anisotropic crystal structures can be modified by varying the crystallographic orientation of their grains. In this study, a co-precipitation approach was used to synthesize an Mg2+-conducting (Mg0.1Hf0.9)4/3.8Nb(PO4)3 solid electrolyte, and the grain orientation in the bulk sample was controlled using strong magnetic fields during the slip casting process. The results showed that inducing an orientation along the c-axis enhanced the apparent ionic conductivity of the bulk sample. It was also observed that (Mg0.1Hf0.9)4/3.8Nb(PO4)3 crystal has a negative volumetric thermal expansion despite a positive linear thermal expansion along its c-axis. By adjusting the c-axis orientation of the grains, (Mg0.1Hf0.9)4/3.8Nb(PO4)3 electrolytes with negative or positive linear thermal expansion coefficient have been produced. The findings of this study suggest that solid-electrolytes with negative, positive, or zero linear thermal expansion can be produced to create more compatible and higher-performance solid-state devices.  相似文献   
7.
Xue  Xiang  Wang  Tong 《热科学学报(英文版)》2020,29(2):435-444
A centrifugal compressor is a typical compressed air energy storage device. In order to ensure the safety of the compressed energy storage process in the compressor, the internal unsteady flow phenomena need to be closely monitored, especially some serious ones like stall and surge. It is necessary to explore the mechanism of flow instabilities under different conditions. A centrifugal air compressor was tested with a vaneless diffuser and a variable vaned diffuser with five different vane setting angles, respectively. Various diffuser types resulted in various modes of flow instabilities prior to surge. The vaneless region between the impeller and the diffuser was focused on. Multiple high-speed sensors were arranged along the circumferential direction. The pressure signals at all these positions were being measured and collected in real time as the compressor was slowly throttled into surge. This paper emphasizes on the influence of matching between the impeller and the diffuser on the flow instability. The experimental results showed that the diffuser vane setting angle affected the stall characteristics. Due to the asymmetry of the volute, the circumferential pressure distribution was always severely distorted prior to surge. A high-pressure region appeared near the volute tongue, and a low-pressure region was formed away from the volute tongue. In the case of the vaned diffuser with non-design installation angle and the vaneless diffuser, the rotating stall signal was originated in the low-pressure region and propagated circumferentially. However, in the case of the vaned diffuser with the design installation angle, the circumferential high-pressure region became the most sensitive region for the generation of stall, and another form of instability occurred there. Both the inducement and development of these flow instabilities have been studied. The dynamic experimental research on the compressor matching different types of diffusers could be a good case supplement.  相似文献   
8.
离心泵长时间运转后,会出现危害严重的汽蚀现象,造成泵性能下降,严重时影响泵的效率、寿命,甚至造成离心泵内部部件损坏。文章通过改变进口压力的方法对单泵、双泵并联、双泵串联等工况下汽蚀对离心泵性能影响进行实验研究。结果表明:当进口压力小于输送液体的饱和蒸汽压时,液体开始发生气化并伴随气泡产生,表明泵内发生汽蚀;汽蚀初期离心泵的效率开始下降,但表现不明显;随着汽蚀不断增大至严重汽蚀区时,Q 1~η曲线出现陡坡,效率出现明显下降并伴随嗡响。实验证明采用提高泵的进口压力等措施可适当减小汽蚀对泵性能的不利影响。  相似文献   
9.
Electroslag casting(ESC)is an important method to produce high quality castings.In this study,the ESC up-pulling inner mold method(EUPIM)was used to produce hollow cylindrical castings with the multiple consumable electrodes.The radial deformation,the axial and radial internal stress of the inner mold,and the axial internal stress of the slag shell were analyzed using the finite element method(FEM)with the aid of ANSYS software.The ProCAST software was used to calculate the specific heat,heat conductivity and density curve of Cu.Simulation results show that the radial deformation,the axial and radial internal stress of the inner mold,and the axial internal stress of the slag shell near the slag-metal interface of hollow cylndrical casting gradually increase from 0 s to 360 s after the ESC starting(slagging)process but before applying the up-pulling force.The suitable initial up-pulling moment of the inner mold is at around 180-198 s after the starting process.  相似文献   
10.
Two theoretical criteria represented by Katgerman, and Clyne and Davies for prognosticating hot tearing sensitivity were compared. Both unrefined and grain-refined samples of Al2024 alloy were solidified at various cooling rates ranging from 0.4 to 17.5 °C/s. Thermal analysis was used to detect dendrite coherency point and temperature of eutectic reaction. Curves of solid and liquid fractions were plotted based on Newtonian method to determine hot tearing susceptible areas. The experimental results show that the most susceptible zone in which hot tearing can occur in Al2024 is where Al2CuMg intermetallic compound forms as a eutectic phase at last stage of mushy-state interval. Also, both criteria are in a good agreement with each other at high cooling rates used in direct-chill casting process while Clyne and Davies' model is more acceptable to determine hot tearing tendency from low to medium cooling rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号