首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   560篇
  免费   0篇
  国内免费   7篇
电工技术   1篇
综合类   9篇
化学工业   296篇
金属工艺   14篇
机械仪表   5篇
建筑科学   1篇
能源动力   32篇
轻工业   9篇
石油天然气   1篇
无线电   39篇
一般工业技术   125篇
冶金工业   3篇
原子能技术   1篇
自动化技术   31篇
  2024年   1篇
  2023年   7篇
  2022年   14篇
  2021年   15篇
  2020年   16篇
  2019年   11篇
  2018年   10篇
  2017年   17篇
  2016年   10篇
  2015年   11篇
  2014年   47篇
  2013年   39篇
  2012年   26篇
  2011年   63篇
  2010年   38篇
  2009年   69篇
  2008年   42篇
  2007年   42篇
  2006年   20篇
  2005年   22篇
  2004年   12篇
  2003年   10篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1987年   1篇
  1982年   1篇
排序方式: 共有567条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(4):4722-4731
In recent years, phase change material emulsions (PCMEs) with enhanced energy storage capacities and good flow characteristics have drawn significant attention. However, due to the thermodynamically unstable nature and tiny particle confinement, the nanomaterial modification strategies at PCM/water interface to improve stabilities and reduce supercooling of nano-sized PCMEs (NPCMEs) are very limited and challenging. Herein, we report a facile strategy for constructing MXene-decorated NPCME with good stability, little supercooling, and high thermal conductivity by self-assembly of MXene nanosheets at PCM/water interface. The concentrations of MXene have great influences on the average droplet diameters, stabilities, and thermophysical properties of the NPCMEs. The results show that the PCMs have been well dispersed into the water in the form of quasi-spherical droplets, with average droplet diameters of 242–805 nm. The thermal conductivity of 10 wt% n-tetradecane/water NPCME containing 9 mg ml-1 MXene is 0.693 W m-1·K-1, achieving an enhancement by 15.5%, as compared to that of water. Besides, the MXene-decorated paraffin/water NPCMEs exhibit little supercooling and enhanced heat storage capacities. More importantly, this facile self-assembly strategy opens a new platform for preparing high-performance NPCMEs, which can be used as novel heat transfer fluids for thermal energy storage systems.  相似文献   
2.
Thermoplastic additives, known as migrating agents, can be added to nanoparticle loaded thermosetting resins to form self-assembled nanoparticle structures. Most notably, in fiber reinforced thermosetting composites, self-assembled nanoparticle rich fiber-matrix interphases can be formed. While the self-assembly mechanism remains unclear, depletion interaction correctly describes the types of self-assembled structures formed. Formulations containing modest concentrations of migrating agent form self-assembled fiber-matrix interphases without causing aggregation in the bulk. Slight overdoses of migrating agent can lead to the formation of nanoparticle aggregates in the bulk phase, which can ultimately reduce the mechanical properties of the composite. Even larger overdoses of migrating agent cause the formation of large and open nanoparticle aggregates, indicative of rapid aggregation. Depletion theory predicts that larger molecular weight migrating agents should induce greater attractive forces, thus reducing the concentrations required to form these self-assembled structures. In this study, the migrating agent molecular weight dependence on the self-assembly and aggregation phenomenon are investigated. As predicted by depletion theory, larger molecular weights led to the formation of self-assembled interphases and aggregates at lower concentrations.  相似文献   
3.
《Ceramics International》2020,46(1):768-774
The construction of three dimensional macroporous architectures holds exciting implications for applications such as catalysis, sensing, tissue engineering and thermal insulation. Here, we report a general self-assembly process for inorganic sponges with hierarchical porosity of intrafibre micro-/meso-/macropores and interfibre macropores. The as-fabricated SiO2-TiO2 sponge possesses a high porosity of >99.86%, ultralow bulk density of 2.9 mg cm−3 and enhanced compressibility (recovery from 50% compression). The self-assembly mechanism of the SiO2-TiO2 sponge has been investigated in detail. The results confirmed that the hydrolysis and polycondensation of mixed inorganic alkoxides could affect the solidification process and the charge transpote during electrospinning, and plays an essential role on the hierarchical porosity and the self-assembly of the sponge macro-structure. The concerted effects of the solidification and electrostatic repulsion between fibres are responsible for the self-assembly process of the electrospun PVP-SiO2-TiO2 sponge. When used as a thermal insulation material, the SiO2-TiO2 sponge shows good fireproof performances. The current contribution may guide more construction of functional inorganic macroporous architectures for advance applications in future.  相似文献   
4.
《Ceramics International》2020,46(14):22282-22289
Self-assembly is an emerging strategy for preparing composite cathodes with good oxygen electrochemical reduction activity and congenital chemical compatibility for intermediate-temperature solid oxide fuel cell (IT-SOFC). Here we report that a self-assembled BaCo0.6Zr0.4O3-δ (BZC-BC) nanocomposite is prepared through one-pot glycine-nitrate process and exhibits high cathode performance. The BZC-BC nanocomposite is composed of 62 mol% cubic perovskite BaZr0.82Co0.18O3-δ (BZC) as an ionic conductor and 38 mol% hexagonal perovskite BaCo0.96Zr0.04O2.6+δ (12H-BC) as a mixed ionic and electronic conductor. The BZC-BC nanocomposite has the pomegranate-like particles aggregated with a larger number of nanoparticles (50-100 nm) which greatly enlarge the three-phase boundary sites. The BZC-BC nanocomposite exhibits a thermal expansion coefficient of 12.89 × 10−6 K−1 well-matched with that of Ce0.8Gd0.2O3-δ (12.84 × 10−6 K−1) electrolyte. The high electro-catalytic activity of BZC-BC nanocomposite cathode for oxygen reduction is reflected by the low polarization resistances of oxygen ions incorporation at cathode/electrolyte interface (0.02823 Ω cm2), oxygen species diffusion (0.03702 Ω cm2) and oxygen adsorptive dissociation (0.07609 Ω cm2) at 700 °C. The single cell with BZC-BC nanocomposite cathode achieves the maximum power density of 1094 mW cm−2 at 650 °C and shows good stability under 25 h run.  相似文献   
5.
《Ceramics International》2020,46(8):11776-11785
Nano-crystalline CeO2 was synthesized via the urea-hydrothermal method without templates or structure-directing agents. The synthesis parameters Ce3+ to Ce4+ and urea to cation molar ratios, reaction temperature and reaction time were varied to analyze their effect on morphology, texture and reducibility. The analysis of the obtained morphologies provides strong evidence of a hierarchical and sequential template-free self-assembly process that evolves from shuttles to dumbbells to spheres. In all cases, the morphology of samples remains unchanged even after calcination at 500 °C. The presence of Ce4+ in the initial solution clearly provides the full self-assembly sequence and is decisive for obtaining non-hollow spheres of CeO2 with high specific surface area and high pore volume. Besides, if only Ce3+ is present, typical CeOHCO3 shuttle-like particles with orthorhombic structure are obtained. The use of Ce3+ in combination with Ce4+ produces partial sequences of the self-assembly process that provide a strong indication of the hierarchical sequence.The urea to cation molar ratio controls the nucleation process and proves to be crucial to obtain the self-assembly sequence. On the other hand, temperature and reaction time show a moderate effect on morphology.  相似文献   
6.
The mainstream of pyrolyzed transitional metal-nitrogen-carbon (M-N-C) catalysts for ORR still confront difficulty in PEMFC application. To pursue M-N-C structure from wet chemistry at ambient temperature, this paper prepares FexCoy-PANI/CNT porous structures composed of amorphous Fe and Co NPs into PANI layer on CNT surface, supported by the controlled molecular self-assembly mechanism (MS). For their ORR behaviors in acid medium, all FexCoy-PANI/CNT catalysts demonstrate similar features as Pt-based catalyst in low current density region, and 4e pathway and active sites in pore utilization in high current density region. Specifically, we disclosed nitrogen in PANI matrix dominates specific activity for ORR, and a little transitional metal attain mass activity at maximum. The active sites mounted into PANI matrix and 4e pathway help catalysts to achieve high durability. Thus, we extend a new type of platinum-free catalyst and develop a bottom-up approach for preparation-structure-activity, expecting to drive PEMFC remarkably.  相似文献   
7.
Two-dimensional self-assembled nanostructures of palladium nanosheets are created during one-step strategies at room temperature. Palladium nanosheets are synthesized in the absence and presence of surfactant (CTAB) agent with the aim of considering the surfactant effect on the morphology and electrocatalytic activity of palladium nanosheets. In both reactions, carbon monoxide and acetic acid act as reducing agent and solvent, respectively. Both palladium nanosheets serve as two-dimensional advanced supportless electrocatalysts for oxidation of formic acid, and clarify higher mass activity and durability in comparison to the palladium anchored on carbon. The exceptional performance of both palladium nanosheets is ascribed to their self-support and huge surface area characteristics. Moreover, the paper well proves that the morphology and electrocatalytic efficiency of palladium nanosheets were seriously affected by the presence of surfactant. Palladium nanosheets synthesized in the absence and presence of surfactant display the flat and stack nanosheets with thicknesses of 3.48 and 4.22 nm, respectively. In addition, comparison of both palladium nanosheets demonstrates that palladium nanosheets synthesized in the absence of surfactant reflect better catalytic efficiency and durability. The presence and bonding of surfactant to the surface of palladium nanosheets lead to the occupancy of active sites and degradation of palladium nanosheets performance. We believe that these palladium nanosheets can be applied as advanced electrocatalysts for diverse applications, especially direct formic acid fuel cells.  相似文献   
8.
《Ceramics International》2022,48(3):3293-3302
In this paper, a novel g-C3N4/ZnO composite microspheres (CZCM) with enhanced photocatalytic activity under visible light exposure were successfully prepared by a self-assembly method followed by calcination in the air. A hierarchical structure in which ZnO microspheres were closely covered with g-C3N4 nanosheets was constructed. The microstructure and photocatalytic activities of the CZCM were characterized. The photocatalytic property of CZCM was evaluated by degrading solution Methyl Orange (MO) and Tetracycline (TC). The effects of varied contents of g-C3N4 on the photocatalytic capability of CZCM were systematically investigated and the results show that the optimized CZ-15% sample exhibit much higher photocatalytic degradation efficiency than that of bare g-C3N4 or ZnO under identical conditions. The analysis of Photoluminescence (PL) and photocurrent (PC) independently conformed that the photo-induced electron-hole (e?-h+) pairs in the CZCM were effectively generated and responsible for the observed photocatalysis. The enhanced adsorption of visible-light and the effective charge separation on the surface of CZCM enabled significant improvement of photocatalytic performance. According to the experimental results and relative energy band levels of the two semiconductors, a possible photocatalysis mechanism for the reaction process is proposed.  相似文献   
9.
Advances in nanoformulation have driven progress in biomedicine by producing nanoscale tools for biosensing, imaging, and drug delivery. Flash-based technology, the combination of rapid mixing technique with the self-assembly of macromolecules, is a new engine for the translational nanomedicine. Here, we review the state-of-the-art in flash-based self-assembly including theoretical and experimental principles, mixing device design, and applications. We highlight the fields of flash nanocomplexation (FNC) and flash nanoprecipitation (FNP), with an emphasis on biomedical applications of FNC, and discuss challenges and future directions for flash-based nanoformulation in biomedicine.  相似文献   
10.
Histidine, a versatile proteinogenic amino acid, plays a broad range of roles in all living organisms and behaves as a key mediator of the interactions of biomolecules with inorganic constituents. The self-assembly of histidine-rich peptides and proteins is critical in biology, as the histidine unit is both a multifunctional regulator and an ideal motif for the construction of complex biological structures. In particular, non-covalent interactions between the imidazole ring and other molecular building blocks and metal ions are routinely employed to generate these complexes. Therefore, this strategy can be duplicated in an artificial context to create sophisticated bioactive materials. In this review, we first highlight a clear perspective of the bio-inspired design strategies which can replicate the hierarchical structure of biological systems allowing the engineering of the supramolecular self-assembly of histidine-functionalized peptides. We further summarize advancements in the field of peptide supramolecular structures incorporating histidine residues in the peptide backbone to generate organized functional supramolecular biomaterials with customizable features. We also discuss significant advances and future prospects in supramolecular self-assembly of histidine-functionalized peptides, as well as provide an overview of advanced techniques for the fabrication of histidine-based biomaterials for bio-nanotechnology, optoelectronic engineering, and biomedicine. Overall, artificial supramolecular materials based on histidine functionalized peptides, motivated by the intriguing properties discovered in natural proteins, bear the potential to boost the creation of sustainable bio-inspired materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号