首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   1篇
  国内免费   2篇
电工技术   4篇
综合类   5篇
化学工业   7篇
金属工艺   31篇
机械仪表   11篇
矿业工程   1篇
轻工业   1篇
石油天然气   1篇
无线电   119篇
一般工业技术   24篇
冶金工业   5篇
自动化技术   4篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   10篇
  2014年   6篇
  2013年   13篇
  2012年   15篇
  2011年   14篇
  2010年   11篇
  2009年   8篇
  2008年   11篇
  2007年   8篇
  2006年   15篇
  2005年   10篇
  2004年   9篇
  2003年   10篇
  2002年   8篇
  2001年   6篇
  2000年   10篇
  1999年   7篇
  1998年   7篇
  1997年   2篇
  1996年   7篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   3篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有213条查询结果,搜索用时 19 毫秒
1.
采用Zn-5Sn-2Cu-1.5Bi(ZSCB)钎料实现了烧结NdFeB永磁材料(NdFeB)与DP1180钢的钎焊连接。在惰性气氛控制的高频感应炉中进行钎焊,采用OM、SEM、EDS、微区XRD和NIM-2000H磁性测试仪等手段分析了接头界面的微观组织结构、NdFeB的磁性能和接头剪切强度。结果表明,NdFeB与ZSCB钎料形成Nd-Fe-Zn和Fe-Zn冶金结合,FeZn13和Fe3Zn10相在DP1180钢侧的界面处形成。焊接温度对NdFeB的磁性能影响较小。与传统方法的粘接相比,接头的剪切强度从32.50MPa提高到44.00MPa,提高了35.38%。由于NdFeB和ZSCB钎料之间的热膨胀系数差异很大,在接近NdFeB的反应层处产生较高的残余应力,导致接头从NdFeB界面处断裂。  相似文献   
2.
The effect of adding 0.5-1.5 wt.% Zn to Sn-3.8Ag-0.7Cu (SAC) solder alloy during reflow and solid state ageing has been investigated. In particular, the role of the Zn addition in suppressing interfacial Intermetallic Compound (IMC) growth on Cu and Ni-P substrates has been determined. Solder-substrate couples were aged at 150 °C and 185 °C for 1000 h. In the case of 0.5-1.0 wt.% Zn on Cu substrate, Cu3Sn IMC was significantly suppressed and the morphology of Cu6Sn5 grains was changed, leading to suppressed Cu6Sn5 growth. In the SAC-1.5Zn/Cu substrate system a Cu5Zn8 IMC layer nucleated at the interface followed by massive spalling of the layer into the solder, forming a barrier layer limiting Cu6Sn5 growth. On Ni-P substrates the (Cu,Ni)6Sn5 IMC growth rate was suppressed, the lowest growth rate being found in the SAC-1.5Zn/Ni-P system. In all cases the added Zn segregated to the interfacial IMCs so that Cu6Sn5 became (Cu,Zn)6Sn5 and (Cu,Ni)6Sn5 became (Ni,Cu,Zn)6Sn5. The effect of Zn concentration on undercooling, wetting angles and IMC composition changes during ageing are also tabulated, and a method of incorporating Zn into the solder during reflow without compromising solder paste reflow described.  相似文献   
3.
内翅片管换热器使用一段时间后,换热效率会降低。主要原因是:波纹型翅片与内管定位不好,引起管内堵塞;内管一端封头的头部很薄,使用一段时间后出现中孔现象,使流体短路,换热系数发生变化;内(外)管和翅片清洗不彻底,使内翅片换热管钎焊部位脱落,影响钎焊质量甚至堵塞通道。详细介绍在内翅片换热管加工过程中对上述三种问题的解决方法。  相似文献   
4.
手工软钎焊是PCB组装和返修工艺中基本的工艺技术之一。主要针对现场要求、焊接工具选择、工艺参数设定、元件组装焊接及返修拆焊等相关内容,对手工软钎焊工艺技术进行详细阐述,为手工焊接从业者提供重要参考依据。  相似文献   
5.
The vertical organic space-charge-limited transistor made of P3HT and small-molecule phosphorescent organic light-emitting diode (OLED) are made on two separate glass substrate by blade coating, then soldered vertically together by tin balls with 40 μm diameter. The soldering is done by hot wind of 150 °C for 5 min Contact resistance is only 10 Ω. The vertical transistor is annealed at 150 °C for 5 min before soldering to enhance the output current up to 25 mA/cm2 and give high thermal stability. Both OLED and the annealed vertical transistor are not affected by the soldering process. The vertical transistor has 1/4 of the OLED area and turns on the bottom-emission white OLED up to 300 cd/m2 and orange OLED up to 600 cd/m2. The entire operation is within 8 V. OLED and transistor array can therefore be made on separate glass substrates then soldered together to form the display.  相似文献   
6.
7.
分析了手工焊、波峰焊、通孔回流焊在高密度线路板组件中通孔插装元器件焊接上的优缺点,介绍了选择性波峰焊的概念、特点、分类和使用工艺要点,指出选择焊是应对PCB焊接新挑战的最佳方法。与传统波峰焊情况不同,选择性波峰焊可以保护表面贴装元件来实现对通孔元件焊接,大幅度降低生产工序和周期时间,印刷线路板的焊接质量也被提升。选择型波峰焊工艺允许充分有效利用SMT贴装设备,消除对点胶机的使用。可以确信选择性波峰焊将会被更多地应用于电子组装上,成为一种具有竞争力的焊接技术。  相似文献   
8.
白融  赵麦群  范欢 《电子工艺技术》2012,33(2):71-74,105
研究了多元醇类溶剂及其复配物对Sn0.3Ag0.7Cu焊膏性能的影响。结果表明:四氢糠醇和聚丙二醇对冰白和水白松香都具有较强的溶解性。当四氢糠醇和聚丙二醇以质量比9:1复配时,获得的焊膏平均铺展率可达87%以上,焊点完整、饱满、无焊球和桥连等缺陷,储存时间较长,是一种综合性能良好的焊膏。  相似文献   
9.
Direct soldering of SiC ceramic in air at 230 °C was achieved using a Sn–9Zn–2Al alloy assisted by ultrasonic wave within seconds. Experimental results indicated that a sound metallurgical bond was formed between the SiC ceramic and Sn–9Zn–2Al alloys. The dependence of interfacial microstructure evolution on ultrasonic action duration time was investigated. Two types of interfacial structures at the interface were observed as the ultrasonic action duration time increased. An amorphous SiO2 layer was identified at the interface for ultrasonic exposures of 1 s, which was the oxide layer formed on the SiC ceramic surface during heating. A layer of amorphous alumina with a thickness of ~ 6.8 nm formed at the interface under ultrasonic action for over 4 s. The shear strength of joints could reach up to 44 MPa. The formation of the alumina layer at the interface was attributed to the redox reaction of Al from the filler metal and SiO2 on the SiC ceramic surface under the action of ultrasonic waves. The rapid interfacial reaction was principally induced by the acoustic cavitation and streaming effects at the liquid/solid interface.  相似文献   
10.
《Ceramics International》2022,48(1):373-380
The wetting of 3% yttria-stabilized zirconia (YSZ) by Sn–8Zr, Sn–4Zr–4Ti, and Sn–8Ti alloys was studied at 800–900 °C. Both Zr and Ti improve the wettability via the formation of reaction products and adsorption. In the systems containing Zr additives in the alloys, ZrO2-x precipitates preferentially, and the wettability is dominated by interface adsorption. An anomalous temperature dependence was found in the final wettability of these systems owing to the decrease in adsorption with an increase in the temperature. The spreading dynamics are controlled by the dissolution of Zr, followed by the formation of a wetting ridge. The wettability of the Sn–8Ti/YSZ system is dominated by the precipitation of reaction products (Ti2O3 and Ti11.31Sn3O10). The reaction kinetics is the limiting factor for spreading in Sn–8Ti/YSZ, and the adsorption at the interface significantly decreased the energy barrier for wetting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号