首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18051篇
  免费   285篇
  国内免费   348篇
电工技术   508篇
综合类   266篇
化学工业   5078篇
金属工艺   1583篇
机械仪表   852篇
建筑科学   1011篇
矿业工程   105篇
能源动力   2632篇
轻工业   640篇
水利工程   47篇
石油天然气   352篇
武器工业   94篇
无线电   991篇
一般工业技术   3121篇
冶金工业   515篇
原子能技术   377篇
自动化技术   512篇
  2024年   4篇
  2023年   348篇
  2022年   488篇
  2021年   508篇
  2020年   486篇
  2019年   453篇
  2018年   465篇
  2017年   537篇
  2016年   503篇
  2015年   567篇
  2014年   946篇
  2013年   1385篇
  2012年   778篇
  2011年   1584篇
  2010年   1076篇
  2009年   1144篇
  2008年   1151篇
  2007年   1003篇
  2006年   778篇
  2005年   717篇
  2004年   617篇
  2003年   515篇
  2002年   388篇
  2001年   272篇
  2000年   295篇
  1999年   272篇
  1998年   281篇
  1997年   234篇
  1996年   189篇
  1995年   162篇
  1994年   117篇
  1993年   75篇
  1992年   67篇
  1991年   57篇
  1990年   42篇
  1989年   39篇
  1988年   34篇
  1987年   18篇
  1986年   16篇
  1985年   20篇
  1984年   10篇
  1983年   10篇
  1982年   17篇
  1981年   11篇
  1980年   4篇
  1974年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   
2.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
3.
Thin multilayer coatings of ZrO2–Y2O3–Al2O3 were prepared using the sol-gel method and dip-coating technique in order to advance in the study of what influence the incorporation of Al2O3 has on films of Y2O3-doped ZrO2, investigating its role in the synthesis of the solutions and in the characteristics and properties of the coatings. After the characterization of the solutions used in the process, the microstructure of the films was studied and their mechanical behaviour and resistance to thermal shock were determined so as to optimize the characteristics and functionality of these coatings. With increased alumina content, 3YSZ-Al2O3 (20 mol%), the cubic phase of the zirconia disappeared completely at the sintering temperature used (700 °C), resulting in the tetragonal phase with Al in solution. There was also a decrease in the coatings' hardness and Young's modulus, and an increase in toughness and resistance to thermal shock. These results allow guidelines to be established for the design of multilayer structures that are, tougher, more resistant, and have improved surface properties.  相似文献   
4.
Glass-based materials are usually considered as excellent seals for jointing adjacent components in planar solid oxide fuel cells, but the uncontrollable crystallization in the glass may cause delamination and micro-cracks in such seals. To solve this problem, Al2O3 ceramic particles were added to a BaO–CaO–Al2O3–B2O3–SiO2 glass system to reduce negative effects caused by crystalline phase on the gas tightness and the joint strength in the seals. At an operating temperature of 750 °C, the glass-based seals with 20 wt% Al2O3 addition (GA80) exhibited extremely low leakage rates (~0.002 sccm/cm under an input gas pressure of 13.6 kPa) and higher shear strength (3.31 MPa). The Al2O3 ceramic addition and the crystalline phase BaAl2Si2O8 reinforced the glass matrix. Further thermal cycle analyses indicated that leakage rates for the GA80 seals remained at around 0.0025 sccm/cm after 10 thermal cycles, which was consistent with minor microstructural change and good interface bonding. Single cell testing with of GA80 seals was performed and the results demonstrated stable electrochemical performance through 6 thermal cycles at an open circuit voltage of 1.16–1.18 V, as well as a power density above 546 mW/cm2 at a current density of 925 mA/cm2. These results showed the high thermal cycle stability of the glass/Al2O3 composite seals in intermediate temperature planar solid oxide fuel cells.  相似文献   
5.
《Ceramics International》2021,47(21):30358-30366
Stereolithography-based 3D printing is a promising method to produce complex shapes from piezoceramic materials. In this study, LCD-SLA 3D printing was used to create lead-free piezoceramics based on barium titanate (BaTiO3, BT). Three types of BT powders (micron, submicron and nanoscale) were tested in LCD-SLA 3D printing, and a technique for the preparation of a ceramic slurry suitable for LCD-SLA printing has been developed. Using TGA-DSC analysis, the thermal debinding parameters to obtain crack-free samples were determined, followed by further sintering and the study of the piezoelectric properties (εr = 1965, d33 = 200 pC/N, tan = 1,7 %). The results of the study demonstrate high potential for the production of complex piezoceramic elements that can be used in aviation, in particular, aviation radio equipment; in the marine industry for transceiver modules of hydroacoustic antennas; and in the nuclear industry for pressure control sensors in the steam–water path.  相似文献   
6.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   
7.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   
8.
9.
This paper investigates the influence of suspension characteristics on microstructure and performance of suspensions plasma sprayed (SPS) thermal barrier coatings (TBCs). Five suspensions were produced using various suspension characteristics, namely, type of solvent and solid load content, and the resultant suspensions were utilized to deposit five different TBCs under identical processing conditions. The produced TBCs were evaluated for their performance i.e. thermal conductivity, thermal cyclic fatigue (TCF) and thermal shock (TS) lifetime. This experimental study revealed that the differences in the microstructure of SPS TBCs produced using varied suspensions resulted in a wide-ranging overall TBC performance. All TBCs exhibited thermal conductivity lower than 1 W/(m. K) except water-ethanol mixed suspension produced TBC. The TS lifetime was also affected to a large extent where 10 wt % solid loaded ethanol and 25 wt % solid loaded water suspensions produced TBCs exhibited the highest and the lowest lifetime, respectively. On the contrary, TCF lifetime was not as significantly affected as thermal conductivity and TS lifetime, and all ethanol suspensions showed marginally better TCF lifetime than water and ethanol-water mixed suspensions deposited TBCs.  相似文献   
10.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号