首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214045篇
  免费   29704篇
  国内免费   23793篇
电工技术   19963篇
技术理论   9篇
综合类   16689篇
化学工业   44723篇
金属工艺   11131篇
机械仪表   12957篇
建筑科学   8305篇
矿业工程   2539篇
能源动力   6348篇
轻工业   13866篇
水利工程   2571篇
石油天然气   4281篇
武器工业   2319篇
无线电   30670篇
一般工业技术   29060篇
冶金工业   4753篇
原子能技术   3431篇
自动化技术   53927篇
  2024年   225篇
  2023年   3473篇
  2022年   5733篇
  2021年   7695篇
  2020年   7635篇
  2019年   6885篇
  2018年   6317篇
  2017年   8483篇
  2016年   8696篇
  2015年   10469篇
  2014年   10646篇
  2013年   14282篇
  2012年   16232篇
  2011年   18349篇
  2010年   13256篇
  2009年   13377篇
  2008年   14473篇
  2007年   16381篇
  2006年   15462篇
  2005年   13231篇
  2004年   11216篇
  2003年   8965篇
  2002年   6801篇
  2001年   5185篇
  2000年   4119篇
  1999年   3428篇
  1998年   2841篇
  1997年   2264篇
  1996年   1968篇
  1995年   1779篇
  1994年   1547篇
  1993年   1164篇
  1992年   950篇
  1991年   781篇
  1990年   707篇
  1989年   511篇
  1988年   351篇
  1987年   222篇
  1986年   194篇
  1985年   247篇
  1984年   215篇
  1983年   164篇
  1982年   209篇
  1981年   106篇
  1980年   100篇
  1979年   29篇
  1978年   22篇
  1977年   30篇
  1976年   20篇
  1959年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Ceria (CeO2) particles are prevalent polishing abrasive materials. Trivalent lanthanide ions are the popular category of dopants for enriched surface defects and thus improved physicochemical properties, since they are highly compatible with CeO2 lattices. Herein, a series of dendritic-like mesoporous silica (D-mSiO2)-supported samarium (Sm)-doped CeO2 nanocrystals were synthesized via a facile chemical precipitation method. The relation of the structural characteristics and chemical mechanical polishing (CMP) performances were investigated to explore the effect of Sm-doping amounts on the D-mSiO2/SmxCe1?xO2?δ (x = 0–1) composite abrasives. The involved low-modulus D-mSiO2 cores aimed to eliminate surface scratch and damage, resulting from the optimized contact behavior between abrasives and surfaces. The trivalent cerium (Ce3+) and oxygen vacancy (VO) at CeO2 surfaces were expected to be reactive sites for the material removal process over SiO2 films. The optimal oxide-CMP performances in terms of removal efficiency and surface quality were achieved by the 40% Sm-doped composite abrasives. It might be attributed to the high Ce3+ and VO concentrations and the enhancement of tribochemical reactivity between CeO2SiO2 interfaces. Furthermore, the relationship between the surface chemistry, polishing performance as well as the actual role in oxide-CMP of the D-mSiO2/SmxCe1?xO2?δ abrasives were also discussed.  相似文献   
2.
Through a facile hydrothermal method, we have successfully prepared Ti3C2/Bi2.15WO6 (TC/BWO) composite, and systematically investigated their reactivity for the photocatalytic reduction of Cr(VI) under visible light. X-ray diffraction and Raman analysis confirm the formation of heterostructure between Bi2.15WO6 and Ti3C2. The resultant 7TC/BWO composite exhibits enhanced photoactivity toward Cr(VI) reduction. After 120 min irradiation, the conversion of Cr(VI) reaches 92.5% with the quasi-first-order kinetic constant of k = 0.0145 min?1, which is higher than that of pure BWO (30% and k = 0.0005 min?1). The electrochemical and photoluminescent characterization confirm that the introduction of Ti3C2 is conducive to the separation of carriers, thus significantly improves the photocatalytic performance of TC/BWO. Furthermore, the radical capture experiments verify that the electrons are important for enhancing reduction of Cr(VI) to Cr(III). As a result, this research provides a comprehensive understanding of the reduction of Cr(VI) by TC/BWO composite under visible light.  相似文献   
3.
The present work addresses the potentialities of Pt–Ru nanoparticles deposited on a graphene oxide (RGO) and TiO2 composite support towards electrochemical oxidation of ethanol in acidic media relevant for fuel cell applications. To immobilize platinum–ruthenium bimetallic nanoparticles on to an RGO-TiO2 nanohybrid support a simple solution-phase chemical reduction method is utilized. An examination using electron microscopy and energy dispersive X-ray spectroscopy (EDS) indicated that Pt–Ru particles of 4–8 nm in diameter are dispersed on RGO-TiO2 composite support. The corresponding Pt–Ru/RGO-TiO2 nanocomposite electrocatalyst was studied for the electrochemical oxidation of ethanol in acidic media. Compared to the commercial Pt–Ru/C and Pt/C catalysts, Pt–Ru/RGO-TiO2 nanocomposite yields higher mass-specific activity of about 1.4 and 3.2 times, respectively towards ethanol oxidation reaction (EOR). The synergistic boosting provided by RGO-TiO2 composite support and Pt–Ru ensemble together contributed to the observed higher EOR activity and stability to Pt–Ru/RGO-TiO2 nanocomposite compared with other in-house synthesized Pt–Ru/RGO, Pt/RGO and commercial Pt–Ru/C and Pt/C electrocatalysts. Further optimization of RGO-TiO2 composite support provides opportunity to deposit many other types of metallic nanoparticles onto it for fuel cell electrocatalysis applications.  相似文献   
4.
The fuel cell/battery durability and hybrid system stability are major considerations for the power management of fuel cell hybrid electric bus (FCHEB) operating on complicated driving conditions. In this paper, a real time nonlinear adaptive control (NAC) with stability analyze is formulated for power management of FCHEB. Firstly, the mathematical model of hybrid power system is analyzed, which is established for control-oriented design. Furthermore, the NAC-based strategy with quadratic Lyapunov function is set up to guarantee the stability of closed-loop power system, and the power split between fuel cell and battery is controlled with the durability consideration. Finally, two real-time power management strategies, state machine control (SMC) and fuzzy logic control (FLC), are implemented to evaluate the performance of NAC-based strategy, and the simulation results suggest that the guaranteed stability of NAC-based strategy can efficiently prolong fuel cell/battery lifespan and provide better fuel consumption economy for FCHEB.  相似文献   
5.
TiO2 quantum dots-sensitized Cu2S (Cu2S/TiO2) nanocomposites with varying concentration of TiO2 QDs are synthesized via a facile two-stage hydrothermal-wet impregnation method. X-ray diffraction analysis confirms the formation of Cu2S and TiO2with chalcocite and anatase phases, respectively. The observed shoulder-like absorption peaks indicate the UV–visible light-driven properties of the composite. Morphological analysis reveals that the fabricated Cu2S/TiO2 composite consists of Cu2S with a nano rod-like shape (average length and width of ~856 and ~213 nm, respectively) and nanosheets-like structures (average length and width of ~283 and ~289 nm, respectively), whereas the TiO2 is formed as quantum dots with a size range of 8.2 ± 0.4 nm. Chemical state analysis shows the presence of Cu+, S2?, Ni2+, and O2? in the nanocomposite. The H2 evolution rate over the optimized photocatalyst is found to be ~45.6 mmol h?1g?1cat under simulated solar irradiation, which is around 5 and 2.4-fold higher than that of the pristine TiO2 and Cu2S, respectively. Continuous H2 production for 30 h is achieved during time-on-stream experiments, demonstrating the excellent stability and durability of the Cu2S/TiO2 photocatalyst for large-scale applications.  相似文献   
6.
Highly-efficient and stable non-noble metal electrocatalysts for overcoming the sluggish kinetics of oxygen evolution reaction (OER) is urgent for water electrolysis. Biomass-derived biochar has been considered as promising carbon material because of its advantages such as low-cost, renewable, simple preparation, rich structure, and easy to obtain heteroatom by in-situ doping. Herein, Ni2P–Fe2P bimetallic phosphide spherical nanocages encapsulated in N/P-doped pine needles biochar is prepared via a simple two-step pyrolysis method. Benefiting from the maximum synergistic effects of bimetallic phosphide and biochar, high conductivity of biochar encapsulation, highly exposed active sites of Ni2P–Fe2P spherical nanocages, rapid mass transfer in porous channels with large specific surface area, and the promotion in adsorption of reaction intermediates by high-level heteroatom doping, the (Ni0.75Fe0.25)2P@NP/C demonstrates excellent OER activity with an overpotential of 250 mV and a Tafel slope of 48 mV/dec at 10 mA/cm2 in 1 M KOH. Also it exhibits a long-term durability in 10 h electrolysis and its activity even improves during the electrocatalytic process. The present work provides a favorable strategy for the inexpensive synthesis of biochar-based transition metal electrocatalysts toward OER, and improves the water electrolysis for hydrogen production.  相似文献   
7.
针对燃气轮机故障诊断过程中诊断精度不足,卡尔曼滤波易出现“弥散”现象的问题,提出了一种基于滤波阵列的燃气轮机气路故障诊断方法。该方法首先构建了一组基于健康参数调度的平衡流形展开模型阵列,然后结合平方根容积卡尔曼滤波对气路部件健康参数进行了实时估计,最后通过隔离因子实现了对故障部件的检测与隔离。仿真表明:该方法有效解决了卡尔曼滤波在故障诊断过程中出现“弥散”现象的问题,针对燃气轮机气路部件突变故障,能够有效实现故障的检测、隔离与估计。  相似文献   
8.
Nonintrusive load monitoring (NILM) is crucial for extracting patterns of electricity consumption of household appliance that can guide users’ behavior in using electricity while their privacy is respected. This study proposes an online method based on the transient behavior of individual appliances as well as system steady-state characteristics to estimate the operating states of the appliances. It determines the number of states for each appliance using the density-based spatial clustering of applications with noise (DBSCAN) method and models the transition relationship among different states. The states of the working appliances are identified from aggregated power signals using the Kalman filtering method in the factorial hidden Markov model (FHMM). Thereafter, the identified states are confirmed by the verification of system states, which are the combination of the working states of individual appliances. The verification step involves comparing the total measured power consumption with the total estimated power consumption. The use of transient features can achieve fast state inference and it is suitable for online load disaggregation. The proposed method was tested on a high-resolution data set such as Labeled hIgh-Frequency daTaset for Electricity Disaggregation (LIFTED) and it outperformed other related methods in the literature.  相似文献   
9.
Nickel selenide electrocatalysts for hydrogen evolution reaction (HER) with a high efficiency and a low-cost have a significant potential in the development of water splitting. However, the inferiority of the high overpotential and poor stability restricts their practical applications. Herein, a composite nanostructure consists of ultrasmall NiSe2 nanocrystals embedded on graphene by microwave reaction is reported. The prepared NiSe2/reduced graphite oxide (rGO) electrocatalyst exhibited a high HER activity with an overpotential of 158 mV at a current density of 10 mA/cm2 and a corresponding moderate Tafel slope of 56 mV/dec in alkaline electrolyte. In addition, a high retention of electrochemical properties (approximately 100%) was demonstrated with an unchangeable microstructure after 100 h of continuous operation.  相似文献   
10.
Sorption selective catalytic reduction of nitrogen oxides (NOx) (sorption-SCR) has ever been proposed for replacing commercial urea selective catalytic reduction of NOx (urea-SCR), while only the single-stage sorption cycle is hitherto adopted for sorption-SCR. Herein, various multi-stage ammonia production cycles is built to solve the problem of relative high starting temperature with ammonia transfer (AT) unit and help detect the remaining ammonia in ammonia storage and delivery system (ASDS) with ammonia warning (AW) unit. Except for the single-stage ammonia production cycle with MnCl2, other sorption-SCR strategies all present overwhelming advantages over urea-SCR considering the much higher NOx conversion driven by the heat source lower than 100°C and better matching characteristics with low-temperature catalysts. Furthermore, the required mass of sorbent for each type of sorption-SCR is less than half of the mass of AdBlue for urea-SCR. Therefore, the multifunctional multi-stage sorption-SCR can realize compact and renewable ammonia storage and delivery with low thermal energy consumption and high NOx conversion, which brings a bright potential for efficient commercial de-NOx technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号