首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
金属工艺   10篇
能源动力   22篇
一般工业技术   1篇
冶金工业   1篇
原子能技术   1篇
  2023年   4篇
  2022年   2篇
  2021年   4篇
  2020年   8篇
  2018年   4篇
  2017年   5篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Intermetallic alloy ZrCo is believed to be a good substitution for uranium to store tritium. Nevertheless, disproportionation reaction often happens during the hydriding and dehydriding processes, and hydrogen storage property of ZrCo is therefore degraded. Alloying elements are often used to substitute Zr or Co in ZrCo to restrain disproportionation reaction. However, many experimental results do not agree with each other, and it lacks overall tendency for all transition metal elements. In this work, systematical ab initio calculations are performed to study more than 20 transition alloying elements to substitute Co and Zr in ZrCoH3 to study the anti-disproportionation effects. It is found that substitution of Co by transition metal elements on anti-disproportionation reaction is unconspicuous, and only Ni can enlarge Zr–H bond length and decrease the volume of 8e site, presenting anti-disproportionation effect, which qualitatively agrees with the previous experiments. In contrast, all transition alloying elements considered except Fe, Co, Ni, Ru, Rh, Pd, Os and Ir replacing Zr can both enlarge the length of Zr–H bond and decrease the volume of 8e site, and thus restrain the disproportionation effects. At last, two-dimensional charge density and density of states are calculated to analyze the underlying mico-mechanisms affecting the effects of transition alloying elements on anti-disproportionation reaction.  相似文献   
2.
ZrCo合金储放氢同位素研究   总被引:1,自引:0,他引:1  
研究了ZrCo合金吸收、释放和分离氢同位素的性能,相同温度下,合金吸氘量小于吸氢量,吸放氘平台压力明显高于吸放氢平台压力,说明合金具有良好的同位素效应.对合金吸氢/氘活化动力学曲线的研究表明,合金在首次吸氢/氘过程中表现出明显的同位素效应,但是随着合金的充分活化,这种同位素效应几乎消失.根据ZrCo合金吸放氢的同位素效...  相似文献   
3.
The thermodynamically and kinetically stable regions of the temperature–H2 pressure phase boundaries for the ZrCoH system were established using the Temperature-Concentration-Isobar (TCI) method. Based on this, the enthalpy change and entropy change values of dehydrogenation and disproportionation reactions were successfully obtained. The average enthalpy change (ΔH) and entropy change (ΔS) estimated from the phase boundaries for dehydrogenation of ZrCoH3 to ZrCo are respectively 103.07 kJ mol?1H2 and 148.85 J mol?1 H2 K?1, which are well agreement with the data reported in literature. The average ΔH and ΔS were estimated to be ?120.91 kJ mol?1H2 and -149.32 J mol?1 H2 K?1 for the disproportionation of ZrCoH3, whereas the ΔH and ΔS were calculated to be ?84.6 kJ mol?1H2 and -92.29 J mol?1 H2 K?1 for disproportionation of ZrCo. In addition, it was found from the established phase boundaries that the anti-disproportionation property of ZrCo alloy can be enhanced if the phase boundaries of hydrogenation/dehydrogenation are far away from the phase boundaries of disproportionation by adjusting the thermodynamics. Meanwhile, it is possible to keep ZrCo away from disproportionation even at high temperature of 650 °C under hydrogen atmosphere, if the temperature-H2 pressure trajectory is carefully controlled without crossing the phase boundaries of disproportionation. Therefore, the established phase boundaries can be used as a guide to the eye avoiding disproportionation and improving the anti-disproportionation property of ZrCo alloy.  相似文献   
4.
ZrCo合金由于优异的储氢性能以及安全特性,已被国际热核实验堆(ITER)研发团队选取为用于氢同位素快速储存与供给的重点备选材料。然而,由吸/放氢循环过程中发生的氢致歧化效应导致的储氢性能严重衰减,成为了ZrCo合金推广应用于氢同位素快速储存与供给的最大障碍。因此,改善ZrCo合金的抗氢致歧化性能对其广泛应用于氢同位素快速储存与供给领域具有重要意义。本文介绍了ZrCo合金的储氢性能和氢致歧化特性,综述了元素替代(掺杂元素部分替代Zr或Co)改善ZrCo合金抗歧化性能的研究进展,并指出进一步改善ZrCo合金抗歧化性能的必要性及可能的发展方向。  相似文献   
5.
Ab initio calculations have been carried out to investigate the adsorption, dissociation, and diffusion of atomic and molecular hydrogen on the Fe-doped ZrCo (110) surface. It is found that the adsorption of H2 on doped surface seems thermodynamically more stable with more negative adsorption energy than that on the pure surface, and the dissociation energy of H2 on doped surface is much bigger therefore. However, compared with the pure system, there are fewer adsorption sites for spontaneous dissociation. After dissociation, the higher hydrogen adsorption strength sites would promote the H atom diffusion towards them where they can permeate into the bulk further. Furthermore, the ZrCo (110) surface possesses much higher hydrogen permeability and lower hydrogen diffusivity than its corresponding ZrCo bulk. Moreover, further comparison of the present results to analogous calculations for pure surface reveals that the Fe dopant facilitates the H2 molecule dissociation. Unfortunately, this does not improve the hydrogen storage performance of ZrCo alloy due to the H atom diffusion on the surface and into bulk are prevented with higher reaction energetic barriers by doping Fe. Consequently, ZrCo (110) surface modified with Fe atoms should not be preferred as a result of its terrible hydrogen permeability. A clear and deep comprehending of the inhibiting effect of Fe dopant on the hydrogen storage of ZrCo materials from the perspective of the surface adsorption of hydrogen are obtained from the present results.  相似文献   
6.
Tritium target is of crucial importance in relation to the development of neutron generator apparatus. However, the prevalent Ti target is now suffering from the intricate procedures for activation, limited tritium content at room temperature (RT) and poor ability to fix the helium. Herein, a succession of new type ZrCo(Ti) alloy targets were designed and fabricated by magnetron sputtering. Firstly, the influence of technological parameters (types of substrate, sputtering temperatures, sputtering time and annealing temperatures) on the assemblage and also the hydrogen storage properties of the ZrCo films were systemically studied. The results show that high sputtering temperature is benefit to acquiring high crystallinity of ZrCo films, but the substrates seem to have no significant effect on that. The thickness and grain size of ZrCo film are both positively related to the sputtering time. However, the hydrogen uptake capacities (0.14 wt%~0.79 wt%) for all the prepared ZrCo films are relatively low. After that, the composition and microstructure of the ZrCo films were further regulated and optimized. On the one hand, Zr1-xTixCo films were constructed by introduction of Ti element, achieving a higher hydrogen absorption capacity (~0.7 wt%), but with weak thermal stability in the subsequent hydrogen desorption process (~80% of hydrogen escaped at 500 °C). On the other hand, the surface of the ZrCo film was modified by a thin layer of Ti, forming a serious of double-layer ZrCo/Ti films. The ZrCo/Ti composite films not only achieve extremely high hydrogen storage capacity (1.85 wt%), but also maintain strong thermal stability (only 15.7% of hydrogen escaped at 500 °C). These findings related to the ZrCo(Ti) films in this paper provide crucial reference for the development of tritiated ZrCo film targets, and spark inspiration even for the design of other new-type tritiated film target.  相似文献   
7.
Fast heat and mass delivery with high cycling stability of the core component, hydrogen storage bed, in SDS are essential for the operation of the future tritium factory in ITER project. However, the aforementioned properties are still perplexing in large-capacity ZrCo bed, especially for that with secondary containment structure required by the actual tritium operation in the future. Herein, the performance including heating, cycling and cooling with two different size ZrCo beds (loading of ZrCo are 200 g and 2000 g respectively) were systematically studied. The experimental data shows that the maximum heating ability of the middle-size/full-scale storage bed are both about 10 °C/min, and the maximum hydrogen absorption capacity of these ZrCo beds are 44.6 L/405.5 L, respectively. Besides, hydrogen pressure and hydrogen retention during the following desorption can affect the cycling performance of the ZrCo bed. The use of transfer pump can reduce the pressure of the bed during the hydrogen desorption process (operated at 500 °C), which inhibits the disproportionation reaction of the ZrCo alloy. However, the degree of hydrogen pressure reduction in two the types of ZrCo bed are different. As a result, the cycling capacity of the middle-size bed (93.4%, lower hydrogen pressure) is higher than the full-scale bed (68.7%, higher hydrogen pressure) after 10 cycles. When the transfer pump was not used and operated at lower temperature (350 °C), the beds cannot release hydrogen completely, and partial hydrogen atoms are retained in the ZrCo alloy. The middle-size bed still maintains a hydrogen storage capacity of 94.5% after 10 cycles, while 75.9% of the hydrogen storage capacity remained for the full-scale bed. Therefore, the increase of hydrogen surplus in ZrCo alloy is helpful to improve its cycling stability. At last, the cooling performances of the beds under 10 different cooling methods were studied. Among the cooling methods, the best cooling rate was achieved by filling nitrogen in the secondary containment cavity and flowing water passing through the cooling circuit of the bed. This work will provide a crucial reference for the design and optimization of the subsequent operation technology of SDS in ITER.  相似文献   
8.
In this paper, a three-dimensional (3D) hydrogen desorption model is applied to the thin double layered annulus ZrCo based hydrogen storage bed to precisely study the hydrogen desorption reaction and resultant heat and mass transport phenomena inside the bed. The 3D hydrogen desorption simulations are carried out and calculated results are compared with the experimental data measured by Kang et al. [1]. The present model reasonably captures the bed temperature evolution behavior and the hydrogen discharging time for 90% desorption. In addition, the thin double layered annulus metal hydride bed (MHB) design is numerically evaluated by comparing with a simple cylindrical MHB. More uniform distributions in the bed temperature and H/M atomic ratio and resultant superior hydrogen desorption performance are achieved with the thin double layered annulus bed owing to its high external surface to volume ratio and thus more efficient heating. This numerical study indicates that efficient design of the metal hydride bed is key to achieve rapid hydrogen discharging performance and the present 3D hydrogen desorption model is a useful tool for the optimization of bed design and operating conditions.  相似文献   
9.
We perform first-principles calculations to investigate the effects of alloying substitutions (i.e. Ti, Hf, Sc, Fe, Ni and Cu) on hydrogen-induced disproportionation of ZrCo alloy. H at the 8e site of ZrCoH3 (H(8e)) plays the key role in the disproportionation process. It is found that H(8e) prefers to form strong covalent-like binding with the neighboring Co and its substitute elements, which is distinctly different from H at the 4c2 and 8f1 sites. Alloying substitutions can restrain or accelerate the disproportionation by influencing the ZrH(8e) bond length and the size of the 8e site. Judged from this, the anti-disproportionation ability of these alloying substitutions is identified. Our results of Ti, Hf, Sc, Fe and Ni are in good agreement with the previous experimental results. It is also predicated that Cu can accelerate hydrogen-induced disproportionation of ZrCo alloy.  相似文献   
10.
First-principles calculations were performed to investigate the bonding characteristics of the undoped and doped ZrCoH3 and predict the anti-disproportionation abilities of alloying elements (i.e. Y, V, Nb, Ta, Zr, Cr, Mn, Ru, Rh, Pd and Zn). The binding between H and Zr (or its substitute elements) shows strong ionic and weak covalent feature, and that between H and Co (or its substitute elements) displays the opposite characteristic. The H diffusion process, the size of the 8e site and the corresponding ZrH distance were calculated, and the substitute elements of Zr (i.e. Nb, Ta and especially V) are predicted to be helpful to improve the ZrCo alloy against the hydrogen-induced disproportionation, and the substitute elements of Co may be not suitable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号