首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2449篇
  免费   137篇
  国内免费   183篇
电工技术   210篇
综合类   151篇
化学工业   360篇
金属工艺   517篇
机械仪表   76篇
建筑科学   207篇
矿业工程   50篇
能源动力   17篇
轻工业   45篇
水利工程   13篇
石油天然气   19篇
武器工业   157篇
无线电   92篇
一般工业技术   495篇
冶金工业   318篇
原子能技术   25篇
自动化技术   17篇
  2024年   6篇
  2023年   35篇
  2022年   41篇
  2021年   50篇
  2020年   56篇
  2019年   67篇
  2018年   57篇
  2017年   87篇
  2016年   79篇
  2015年   70篇
  2014年   107篇
  2013年   127篇
  2012年   108篇
  2011年   151篇
  2010年   122篇
  2009年   146篇
  2008年   124篇
  2007年   149篇
  2006年   167篇
  2005年   164篇
  2004年   137篇
  2003年   137篇
  2002年   96篇
  2001年   77篇
  2000年   81篇
  1999年   80篇
  1998年   52篇
  1997年   42篇
  1996年   28篇
  1995年   35篇
  1994年   21篇
  1993年   17篇
  1992年   16篇
  1991年   10篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有2769条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(4):5091-5099
The impact of the addition of TiO2 nanoparticles and nanowires on the morphology, phase characteristics, contact angle, and electrochemical performance of chemically bonded phosphate ceramic coatings (CBPCs) was investigated. The chemical composition and surface morphology of the TiO2 nanoparticle and nanowire modified with and without (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane were characterized. Results indicated that the hydrophobic –CF2– and –CF3 groups were successfully introduced into the TiO2 nanoparticles and nanowires after modification. Corrosion resistance of CBPCs with TiO2 was evidently improved compared with that without TiO2. Such improvement was mainly due to the combined effects of low surface energy materials and micro/nano structures. In addition, CBPCs with TiO2 nanowires exhibited higher hydrophobicity and corrosion resistance than those with TiO2 nanoparticles because of the special columnar structure of the nanowires.  相似文献   
2.
In this work we have investigated the effect of the solvent during the processing of SrFe12O19 platelet-based permanent magnets by cold sintering process (CSP) plus a post-thermal treatment. Several organic solvents: glacial acetic acid, oleic acid and oleylamine have been analyzed, optimizing the CSP temperatures at 190?270 °C, under pressures of 375?670 MPa and 6?50 wt% of solvent. Modifications in the morphological and structural properties are identified depending on the solvent, which impacts on the magnetic response. Independently of the solvent, the mechanical integrity of ferrite magnets obtained by CSP is improved by a post-annealing at 1100 °C for 2 h, resulting in relative densities around 92 % with an average grain size of 1 μm and a fraction of SrFe12O19 phase >91 %. HC ≥ 2.1 kOe and MS of 73 emu/g are obtained in the final sintered ceramic magnets, exhibiting the highest HC value of 2.8 kOe for the magnet sintered using glacial acetic acid.  相似文献   
3.
In this study, chemically bonded phosphate ceramic coatings (CBPCCs) with different contents of aluminum phosphate (AP) are prepared on stainless steel (AISI 304L). Differential scanning calorimetry, X-ray diffraction, contact angle test, and a tribocorrosion experiment are carried out to clarify the role of AP in the tribocorrosion performance of CBPCCs. The results show that, with the increase in the AP content, the enthalpy of curing increases because of the greater formation of the bonding phase AlPO4. Both in static corrosion and in tribocorrosion, the corrosion current density of CBPCCs achieves the lowest value when the weight ratio of AP to polytetrafluoroethylene is about 0.78. Additionally, the influence mechanism of AP on tribocorrosion is clarified. AlPO4 from the reaction between AP and Al2O3 has excellent mechanical properties and can enhance the wear resistance of CBPCCs by reducing the mechanical wear and the increased wear due to corrosion. The alumina particles wrapped by AlPO4 can form a dense and smooth surface and change the direction of electrolyte propagation, which leads to the increase in the tribocorrosion resistance of CBPCCs.  相似文献   
4.
We report the fabrication of bulk anisotropic(SmCo+FeCo)/NdFeB multicomponent nanocomposite magnets using high-pressure thermal compression(HPTC).The correlations among microstructure,magnetic properties,heating temperature and composition of the HPTC nanocomposite magnets were studied.The HPTC magnet made under variable temperatures(VT),with 19 wt% of FeCo phase,exhibits a maximum energy product of 32 MGOe,which is much higher than that(14 MGOe) for the HPTC magnet made under a constant temperature(CT).When the FeCo content increases to~23 wt%,the HPTC magnet made under VT still remains a high energy product of about 25 MGOe.With increasing NdFeB content,the(SmCo+FeCo)/NdFeB multicomponent nanocomposite magnets exhibit an enhanced magnetic anisotropy and coercivity.This work is beneficial to fabricating high-performance and low-cost permanent magnets for practical applications.  相似文献   
5.
Al coated NdFeB magnets obtained by vacuum evaporation technique were densified by high energy ball milling method.The surface morphology,metal composition and micro structure of the coatings were characterized by scanning electron microscopy,X-ray diffraction and X-ray photoelectron spectroscopy,respectively.The anticorrosive properties were investigated by potentiodynamic polarization curves and neutral salt spray test.The pores in the Al coatings of columnar crystals(Al) induced by the evaporation technique,were apparently filled in the following ball milling process,leading to the densification of Al coatings and the evident improvement of the anticorrosive performances.When treated with ball milling for 30 min,the sample achieves the best anticorrosive performances with the self-corrosion potential of-0.87 V,self-corrosion current density of 1.65 μA/cm~2 and the neutral salt spray(NSS) time of 144 h(red rust).The improvement of the anticorro sive performances of vacuum evaporated Al coating mainly lies in the densification effect of the coating,which depends on different loading conditions of ball milling process.  相似文献   
6.
Adhesively bonded joints have been extensively employed in the aeronautical and automotive industries to join thin-layer materials for developing lightweight components. To strengthen the structural integrity of joints, it is critical to estimate and improve joint failure loads effectually. To accomplish the aforementioned purpose, this paper presents a novel deep neural network (DNN) model-enabled approach, and a single lap joint (SLJ) design is used to support research development and validation. The approach is innovative in the following aspects: (i) the DNN model is reinforced with a transfer learning (TL) mechanism to realise an adaptive prediction on a new SLJ design, and the requirement to re-create new training samples and re-train the DNN model from scratch for the design can be alleviated; (ii) a fruit fly optimisation (FFO) algorithm featured with the parallel computing capability is incorporated into the approach to efficiently optimise joint parameters based on joint failure load predictions. Case studies were developed to validate the effectiveness of the approach. Experimental results demonstrate that, with this approach, the number of datasets and the computational time required to re-train the DNN model for a new SLJ design were significantly reduced by 92.00% and 99.57% respectively, and the joint failure load was substantially increased by 9.96%.  相似文献   
7.
Indirect selective laser sintering (SLS) was combined with reactive melt infiltration (RMI) to fabricate RB-SiC, and the effects of preform impregnation with different carbon source on the carbonized sample and final RB-SiC were investigated. Results show that the impregnation treatment led to increased bulk density and mechanical strength of samples at all stages. The pore size dwindled and the porosity decreased significantly for the carbonized sample, and the content of Si reduced for the final RB-SiC. The impregnation with PF resin containing 30 % nano carbon black (PFnanoC) seems more promising for the comprehensive properties improvement, the final RB-SiC had a relatively fewer amount of residual pore and carbon and showed superior mechanical properties compared with those of sample impregnated with only PF resin. Kinetics analysis indicates a slower pore-clogging rate under the PFnanoC impregnation condition, which avoided or hindered a too-early infiltration cease during the RMI process.  相似文献   
8.
采用浸涂方式在烧结钕铁硼磁体表面制备CeO2/硅烷复合涂层,研究了硅烷水溶液中纳米CeO2颗粒掺杂量对复合涂层性能的影响,通过扫描电镜、能谱分析仪、动电位极化曲线及中性盐雾试验对所制备的CeO2/硅烷复合涂层的形貌、元素分布以及耐腐蚀性能进行分析。结果表明:纳米CeO2颗粒的添加增强了涂层的硬度,提高了硅烷涂层的屏蔽性能,延长了腐蚀溶液渗入硅烷涂层的腐蚀通道,复合涂层耐中性盐雾试验能力可达24 h。但由于纳米颗粒只是机械的镶嵌到复合涂层中,不会改变硅烷涂层在固化过程中醇基之间脱水缩合反应的本质,在NaCl溶液中,复合涂层依然会形成高低不同的交联密度区,CeO2/硅烷复合涂层失效的主要原因依然是在交联密度低的区域首先水解溶解导致的。  相似文献   
9.
采用化学镀方法在钕铁硼表面分别制备Ni-P合金镀层、Ni-Mo-P合金镀层、Ni-P/PTFE复合镀层和Ni-Mo-P/PTFE复合镀层,并研究了不同化学镀层在模拟海洋大气环境中的腐蚀行为。结果表明:Ni-P合金镀层、Ni-Mo-P合金镀层、Ni-P/PTFE复合镀层和Ni-Mo-P/PTFE复合镀层都完整覆盖钕铁硼表面,它们的粗糙度差别不大,在模拟海洋大气环境中的腐蚀失重都低于钕铁硼的腐蚀失重,容抗弧半径增大且电荷转移电阻有不同程度的提高。与Ni-P合金镀层和Ni-Mo-P合金镀层相比,Ni-P/PTFE复合镀层和Ni-Mo-P/PTFE复合镀层具有优良的耐腐蚀性能,原因在于PTFE颗粒较均匀的沉积在镀层表面增加一道屏蔽层,也起到阻碍腐蚀介质渗透腐蚀的作用。尤其是Ni-Mo-P/PTFE复合镀层,其表面更致密,PTFE颗粒沉积更均匀,能更有效延缓腐蚀介质与钕铁硼接触,显著提高钕铁硼在模拟海洋大气环境中的耐腐蚀性能。  相似文献   
10.
Novel AlN-SiC-C refractories were fabricated by nitrogen gas-pressure sintering using single Al4SiC4 as raw-material. The high nitrogen pressure is essential and effective for the nitridation because it contributes to the diffusion of the nitrogen atoms into the interior matrix of Al4SiC4 specimen. Different from traditional carbon-containing refractories and ceramic bonded carbon materials (CBCs), the resulted products possess a honeycomb microstructure consisting of interlocked structure of worm-like SiC and C particles with a AlN ceramic boundary. AlN-SiC nanoparticles and aluminum carbonitride particles (Al-C-Ns) were formed at the interface between AlN-rich and C/SiC-rich area, which acted as transition phases that make these two areas combined tightly. The as-prepared AlN-SiC-C refractories at 1700 ℃ by a 20 atm pressure showed a relative density of 75.8%, combining a bulk density of 2.20 g/cm3 with a flexural strength of 120.9 MPa. Furthermore, the potential reaction mechanism responsible for fabrication of AlN-SiC-C refractories was revealed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号